Silane Coupling Agents

Combination of Organic and Inorganic Materials

Resins & Oligomers, Silanes Products Selection Guide

Please scan the QR code with your smartphone or tablet, or access https://www.shinetsusilicone-global.com/guide/. You can search for the most suitable products.

Si

Our diverse array of materials enable users to enhance the quality and functionality of their products, and expand the possibilities for new product development.

CONTENTS

What are Silane Coupling Agents?	3
4 Types of Silane Coupling Agents Usage ······	·· 4
Application Examples of Silane Coupling Agents	•• 6
Reaction Mechanism of Silane Coupling Agents	•• 8
Main Products Lineup	10
Development Concept of Shin-Etsu Silane Coupling Agents	12
Highly functional Products Lineup	13
Long-chain Spacer Silane Coupling Agents	13
Multi Functional Silane Coupling Agents	14
Polymerizable Type, Liquid Rubber Modified Type, Anti-rust Properties Imparting Type Silane Coupling Agents	· 15
Protected Functional Group Silane Coupling Agents	16
VOC Free Silane Coupling Agents	17
Dialkoxy Silane Coupling Agents	17
Ethoxy Silane Coupling Agents	17
Silanes	18
Product Features & Packaging Options	· 20
Q & A	· 24
Handling Precautions	· 27

High Functionality

- Hydrophobicity
 Flexibility
 Compatibility

Eco-friendly

- Reduced VOC
- Low Volatile Content

Usability

- One-component products can be used in place of two-component products Eliminate the step of bydrolysis
- hydrolysis
- Excellent storage stability

<text><text>

Methoxy groups Ethoxy groups, other

Features of Hydrolyzable Silyl Groups Methoxy type: Hydrolyzes rapidly. Ethoxy type: Hydrolyzes slowly, and compositions will be highly stable even after addition. This type is more eco-friendly, because the product of hydrolysis is ethanol. Dialkoxy type: Good stability after hydrolysis. Condensation products form straight-chain structures. Trialkoxy type: High reactivity with high crosslinking density. Strong bonding with inorganic materials.

Features of Shin-Etsu Silane Coupling Agents

In addition to general-purpose trimethoxy types, Shin-Etsu offers a wide range of dialkoxy and ethoxy type products. We are also developing products with an emphasis on the following:

1High Functionality

2Eco-friendly

Output States States

What are Silane Coupling Agents?

4 Types of Silane Coupling Agents Application

Inorganic substrate

4

X = Organic functional groups

Resists

Hard coatings

Silane Coupling Agents Usage

Reaction Mechanism of Silane Coupling Agents

Reaction Examples of Organic Functional Groups

				-			
Functional group	Reactive group	Reaction product		Functional group	Reactive group	Reaction product	
Epoxy group	H2N-	Epoxide ring-opening reaction \bigvee_{OH}^{N}		Vinyl group		Grafting reaction	
	H0-	Epoxide ring-opening reaction			`C' `C' `C' `C' H₂ H₂ H₂ H₂ H₂	СН' СС' СН' СС' Hz Hz	
0	H00C-	Epoxide ring-opening reaction γ_{OH}		(Meth) Acryloxy group	R1	Copolymerization	
	CI-	Dehydrochlorination reaction \bigvee_{NH}		R₁ I OCC=CH₂	C≕CH₂ │ COOR		
	CIOC-	Amidation reaction 🔨 NHCO—		0 U			
	\bigvee	Epoxide ring-opening VNH VH		las avanata	H₂N−	Ureidation reaction	
Amino group	OCN-	Ureidation reaction MNHCONH—		group	HO-	Urethanation reaction N	
VNH2	HO-	Hydrogen bonding with hydroxyl groups $H \to N \to N$		-NCO	HOOC-	Addition reaction	
	H2N-	Hydrogen bonding with amino groups				н	
	HOSO2-	Salt formed with		Mercapto group	OCN-	Thiourethanation reaction s	
	H00C-	Salt formed with carboxylic acid		-SH		Ene-thiol reaction _s/	

Hydrolytic Properties of Alkoxy Groups

Generally speaking, methoxy groups (-OCH₃) have higher reactivity than ethoxy groups (-OC₂H₅). In acidic conditions, fewer alkoxy groups will mean a faster reaction, which means that dimethoxy types will hydrolyze fastest, followed in order by the trimethoxy, diethoxy and triethoxy types. By contrast, in basic conditions, the order goes from the trimethoxy types to the dimethoxy, triethoxy and diethoxy types. Under acid condition
Under basic condition

Mix ratio : Each silane10 wt. part (Total 40 wt. part)

n-decane 10 wt. part / pH adjusted water 20 wt. part

pH adjusted water : 0.05% acetic acid water room temperature Mix ratio : Each silane10 wt. part (Total 40 wt. part) / n-decane 10 wt. part / pH adjusted water 20 wt. part

Reaction with Organic Resins

			Th	erm	opla	astic	resi	ins				Th	erm	oset	ting	res	ins					Ela	stor	ner•	Rub	ber			
Resin Functional groups	Polyethylene	Polypropylene	Polystyrene	Acrylic	PVC	Polycarbonate	Nylon	Urethane	PBT·PET	ABS	Melamine	Phenolic	Ероху	Urethane	Polyimide	Diallyl phthalate	Unsaturated polyester	Furan	Polybutadiene rubber	Polyisoprene rubber	Sulfur-crosslinked EPDM	Peroxide Crosslinked EPDM	SBR	Nitrile rubber	Epichlorohydrin rubber	Neoprene rubber	Butyl rubber	Polysulfide	Urethane rubber
Vinyl	++	++														+	+				+	+							
Ероху	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+					+	+	+		+	+	+
Styrene			+	+																									
Methacryloxy	++	++	++	+		+		+		++						+	++				+	++							
Acryloxy	+	+	+	+		+		+		++						+	++				+	++							
Amino	+	+	++	++	++	+	++	+	+	+	+	++	++	+	+			++			+	+		+		+	+	+	+
Ureide							++					+		+	+														
Mercapto	+	+	+		+			+		+		+	+	+					+	+	++	+	+	+	+	+		++	++
Isocyanate						+	+	++	+	+	+	+	+	++	+			+											+

Organic Functional Groups and Compatible Resins

++: Very effective + : Effective

*Not all the functional groups are capable of coupling with the resins in question. This should be taken as a guide.

Types of Inorganic Materials and Reactivity of Silanol

Alkoxy groups hydrolyze to form silanols, which hydrogen-bond to hydroxyls on the surface of inorganic substrates. Typically, Silane coupling agents react more easily with inorganic materials having larger numbers of active hydroxyl groups on their surfaces.

Numbers of Hydroxyl Group on the Surface	Large			Small
Reactivity	High			Low
Inorganic material	Glass Silica Alumina	Talc Clay Mica Aluminum Iron	Titanium oxide Zinc oxide Iron oxide	Graphite Carbon black Calcium carbonate

Main Products Lineup

Product List

Functional group	Product name	Chemical name	Structural formula
Vinul	KBM-1003	Vinyltrimethoxysilane	(CH ₃ O) ₃ SiCH=CH ₂
Villyt	KBE-1003	Vinyltriethoxysilane	(C ₂ H ₅ O) ₃ SiCH=CH ₂
	KBM-303	2-(3,4 epoxycyclohexyl) ethyltrimethoxysilane	(CH ₃ O) ₃ SiC ₂ H ₄ –
	KBM-402	3-Glycidoxypropyl methyldimethoxysilane	CH3 O (CH3O)2SiC3H6OCH2CH-CH2
Ероху	KBM-403	3-Glycidoxypropyl trimethoxysilane	,O (CH₃O)₃SiC₃H₀OCH₂CH−CH₂
	KBE-402	3-Glycidoxypropyl methyldiethoxysilane	CH3 _0 (C2H₅O)2SiC3H6OCH2CH−CH2
	KBE-403	3-Glycidoxypropyl triethoxysilane	(C2H5O)3SiC3H6OCH2CH-CH2
Styrene	KBM-1403	p-Styryltrimethoxysilane	(CH ₃ 0) ₃ Si – (-) – CH=CH ₂
	KBM-502	3-Methacryloxypropyl methyldimethoxysilane	ÇH₃ ÇH₃ (CH₃O)₂SiC₃H₀OCC=CH₂ Ŏ
Methacryloxy	KBM-503	3-Methacryloxypropyl trimethoxysilane	CH₃ (CH₃O)₃SiC₃H₀OCC=CH₂ Ŏ
	KBE-502	3-Methacryloxypropyl methyldiethoxysilane	$\begin{array}{ccc} CH_3 & CH_3 \\ (C_2H_5O)_2SiC_3H_6OCC=CH_2 \\ O \end{array}$
	KBE-503	3-Methacryloxypropyl triethoxysilane	CH3 (C2H5O)3SiC3H6OCC=CH2 O
Acryloxy	KBM-5103	3-Acryloxypropyl trimethoxysilane	(CH ₃ O) ₃ SiC ₃ H ₆ OCCH=CH ₂ Ö
	KBM-602	N-2-(Aminoethyl)-3-aminopropylmethyldimethoxysilane	CH3 (CH3O)2SiC3H6NHC2H4NH2
	KBM-603	N-2-(Aminoethyl)-3-aminopropyltrimethoxysilane	(CH3O)3SiC3H6NHC2H4NH2
	KBM-903	3-Aminopropyltrimethoxysilane	(CH ₃ O) ₃ SiC ₃ H ₆ NH ₂
Amino	KBE-903	3-Aminopropyltriethoxysilane	(C₂H₅O)₃SiC₃H6NH₂
Amino	KBE-9103P	3-Triethoxysilyl-N-(1,3 dimethyl-butylidene) propylamine	$(C_2H_5O)_3SiC_3H_6N=C C_{CH_3}^{\prime C_4H_9}$
	KBM-573	N-Phenyl-3-aminopropyltrimethoxysilane	(CH ₃ O) ₃ SiC ₃ H ₆ NH-
	KBM-575	N-(Vinylbenzyl)-2-aminoethyl- 3-aminopropyltrimethoxysilane hydrochloride	Active ingredients: 40%, methanol solution
Liveide	KBE-585A	3-Ureidopropyltrialkoxysilane	(RO)₃SiC₃H₀NHCNH₂ Active ingredients: 50%, Ö alcohol solution
Oreide	KBM-585	3-Ureidopropyltrimethoxysilane	(CH3O)3SiC3H6NHCNH2 Ö
Isocyanate	KBE-9007N	3-Isocyanatepropyltriethoxysilane	$(C_2H_5O)_3SiC_3H_6N=C=0$
Isocyanurate	KBM-9659	Tris-(trimethoxysilylpropyl)isocyanurate	(CH₃O)₃Si(CH₂)₃N_Q O< _N(CH₂)₃Si(OCH₃)₃ (CH₃O)₃Si(CH₂)₃N_O
	KBM-802	3-Mercaptopropylmethyldimethoxysilane	CH₃ (CH₃O)₂SiC₃H₀SH
mercapto	KBM-803	3-Mercaptopropyltrimethoxysilane	(CH3O)3SiC3H6SH

*Calculated from energy of evaporation and molar volume as determined by the Fedor's method.

Flash point \degree C	Minimum covering area m²/g	Solubility parameter*
23	526	7.49
54	410	7.76
163	317	8.59
134	354	8.35
149	330	8.49
128	314	8.38
144	280	8.51
136	348	8.88
115	335	8.53
125	314	8.66
136	300	8.54
128	270	8.64
126	333	9.05
110	378	8.87
128	351	9
88	435	8.56
98	352	8.56
134	_	8.41
165	305	9.15
11	_	—
11	_	10.6 (On condition of R = Et)
182	351	11.0
118	315	9.17
186	125	10.6
72	432	8.32
107	398	8.49

About Product Name of Shin-Etsu Silane Coupling Agents

KBM-1003 → The last digit indicates the number of hydrolyzable groups.
*There are certain exceptions.
M indicates methoxy groups,

Solubility in water

E indicates ethoxy groups.

The alkoxysilyl groups in a silane coupling agent react with water to form silanol groups.

These silanol groups are unstable and over time will undergo condensation. This results in formation of siloxane linkages, and ultimately gelation.

Silanol groups are generally unstable in aqueous solutions, but their stability improves if the solution is mildly acidic.

Meanwhile, amino silanes are very stable in aqueous solutions, due to interaction of the amino groups.

Methods for improving a solution's shelf-life include adjusting the pH of the liquid, combining it with alcohol, and storing it at room temperature or as below.

Solubility and Stability at Optimum pH

Product name	Solubility (pH of aqueous solution)	Shelf-life
KBM-1003	+(3.9)	Up to 10 days
KBE-1003	+(3.9)	Up to 10 days
KBM-303	+(4.0)	Up to 30 days
KBM-403	++(5.3)	Up to 30 days
KBE-402	+(4.0)	Up to 10 days
KBE-403	+(4.0)	Up to 10 days
KBM-1403	Insoluble	—
KBM-502	+(4.0)	Up to 1 day
KBM-503	+(4.2)	Up to 1 day
KBM-5103	+(4.2)	Up to 3 days
KBM-602	++(10.0)	Up to 30 days
KBM-603	++(10.0)	Up to 30 days
KBM-903	++(10.0)	Up to 30 days
KBE-903	++(10.0)	Up to 30 days
KBM-573	+(4.0)	Up to 1 day
KBM-803	+(4.0)	Up to 1 day

*Solubility

++: 1% silane-water solution can be prepared without adjusting pH of aqueous solution. +: 1% silane-water solution can be prepared if pH of aqueous solution is adjusted. Insoluble: Silane-water solution cannot be prepared

*Information on shelf-life should be taken as a guide. Shelf-life will vary depending on usage conditions and intended use.

Development Concept of Shin-Etsu Silane Coupling Agents

Long-chain Spacer Silane Coupling Agents

Compared to general-purpose silane coupling agents, these have higher hydrophobicity, which means that fillers treated with them will have greater dispersibility. Another advantage is that the cured material will have improved flexibility.

Model of Chemical Structure Features and Resulting Properties Improving compatibility Conventional grade Improving with resins Organic functional (MeO)₃Si Spacer hydrophobicity Filler high loading group Improving alkali (lipophilicity) resistance Inorganic part Organic part Long-chain Spacer Type Maximize freedom Organic functional of functional groups Space (MeO)₃Si group (Improving reactivity) Improving flexibility Improving adhesion Improving flexibility Inorganic part Organic part of cured materials Product List Organic functional group Product name Chemical structure Vinyl KBM-1083 (MeO)₃Si KBM-4803 Epoxy (MeO)₃Si

(MeO)₃Si

Methacryloxy KBM-5803 Amino KBM-6803 (MeO)₃Si

Epoxy-on-glass adhesion test

Measurements of cured materials

н

Sample Parameter	KBM-4803 condensate	KBM-403 (conventional grade) condensate	KBM-5803 condensate	KBM-503 (conventional grade) condensate
Pencil hardness	ЗH	5H	В	Н
Cure shrinkage*	No	Yes	No	Yes

NH

Cured film thickness : 5μ m Substrate : PET (thickness 0.2mm) (Not specified values)

*Model of cure shrinkage

PET

Warping: the degree of cure shrinkage

Test method

A 1% aqueous solution is applied to a glass substrate.
 A cured material (epoxy resin/triethylenetetramine) is prepared and adhesive strength is tested

*Adhesive strength is calculated against a standard of 100 (untreated glass). KBM-403: 3-Glycidoxypropyl trimethoxysilane

Dispersibility of treated silicas

Parameter	Sample	KBM-4803 treatment	KBM-403 treatment
Viscosity	Pa∙s	120	260

Long-chain spacer silane coupling agents help hold viscosity down and enable higher fill factors. Formulation : Silane treated silica 10 wt% / Multifunctional epoxy compounds 90 wt%

Long-chain spacer silane coupling agents improve the dispersibility of fillers, and compositions will be more transparent.

Long-Chain Spacer Silane Coupling Agents

Formulation : Silane treated silica 10 wt% / Multifunctional acrylic compounds 90 wt%

Multi Functional Silane Coupling Agents

Compared to monomer types, multi functional silane coupling agents have lower volatility and a greater number of sites for reaction with resins, so you can expect improved adhesion to the substrate. And because they have film-forming properties, this type of silane coupling agent can also be used as a primer.

Organic Chain Type : Excellent Compatibility with Resins

Features and Resulting Properties

Model of Chemical Structure

Product List

Organic functional group	Product name	Alkoxy group	Numbers of functional groups* ²	Viscosity mm²/s	Reactive functional group equivalent g/mol
Acrulic	X-12-1048	MeO	1	33	300
Acrylic	X-12-1050	MeO	5	6,000	150
Frank	X-12-981S	EtO	3	1,000	290
Ероху	X-12-984S	EtO	3	2,000	270
Mercapto	X-12-1154	MeO	3	1,500	240
Amino	X-12-972F*1	EtO	5	8.6	600
Isocyanate	X-12-1159L	MeO	2	4,000	360

*1 15% of ethanol solution *2 Number of organic functional groups to each Si atom

(Not specified values)

Test method :

①A 1% aqueous solution is applied to a glass substrate.

②A cured material

(epoxy resin/triethylenetetramine) is prepared and adhesive strength is tested.

*Adhesive strength is calculated against a standard of 100 (untreated glass). KBE-903 : 3-Aminopropyltriethoxysilane KBM-403 : 3-Glycidoxypropyl trimethoxysilane

KBF-903 Untreated

Non-volatile Content of Silane Coupling Agents

Multi functional silane coupling agents have lower volatility compared to monomer types.

Organic functional	Product name		Non-volatile content %	
group	FIGULE Hame	105℃×3 h	150℃×3 h	180℃×3 h
	KBM-5103 (Acryloxy silane)	29	0	-
	KBM-503 (Methacryloxy silane)	60	0	-
	KBM-5803 (Long-chain methacryloxy silane)	98	34	37
(Meth)acryloxy	X-12-1048 (Multi functional acryloxy silane)	97	84	79
	X-12-1050 (Multi functional acryloxy silane)	99	97	97
	KR-513 (Acryloxy alkoxy oligomer)	97	94	93
	X-40-9296 (Methacryloxy alkoxy oligomer)	98	95	95
	KBM-403 (Epoxy silane)	66	4	-
	KBM-4803 (Long-chain epoxy silane)	98	68	39
Ероху	X-12-981S (Multi functional epoxy silane)	92	87	74
	X-12-984S (Multi functional epoxy silane)	94	90	88
	KR-516 (Epoxy alkoxy oligomer)	93	85	80

*Measurements are performed on 2 g of undiluted silane in a 50 cc beaker.

(Not specified values)

Polymerizable Type Silane Coupling Agents

X-12-1290, KBM-1403

Resulting Properties

X-12-1290 :

Radical cross-linking is possible due to the inclusion of allyl groups.

•By adding it to polymerizable resin compositions, it improves the adhesion between inorganic materials such as fillers and resins.

KBM-1403 :

- •Because it contains styrene group, anionic polymerization, cationic polymerization, and radical polymerization are possible.
- •By adding it to polymerizable resin compositions, it improves the adhesion between inorganic materials such as fillers and resins.

General Properties

Organic functional group	Product name	Chemical name	Specific gravity at 25°C	Refractive index at 25℃	Flash point °C
Vinyl	X-12-1290	Organosilane	1.17	1.483	190
Styrene	KBM-1403*	p-styryltrimethoxysilane	1.06	1.504	136

Chemical Structure

Non-volatile Content Measurement Data

*This product must be stored below 0℃.

.iquid Rubber Modified Type Silane Coupling Agents

Butadiene Polymer Modified Silane Coupling Agent X-12-1267B-ES

(Not specified values)

Resulting Properties

Improved compatibility and adhesion of various resins Improved water resistance due to high hydrophobicity

General Properties						
Item Product name X-12-1267B-ES						
Appearance	Pale yellow slightly cloudy liquid					
Viscosity at 25°C	1,100					
Non-volatile content 105°C×3 h mPa·s	>98					
Number average molecular weight* % 6,200						
*Calculated by styrene conversion	(Not specified values)					

Chemical Structure

Anti-rust Properties Imparting Type Silane Coupling Agents

Silane Coupling Agent with Benzotriazole Groups X-12-1214A

A silane coupling agent with a benzotriazole group as an organic functional group, which is effective for rust prevention of metals. By adhering the alkoxy group to the inorganic base material, it stays on the surface of the metal base material and exhibits an excellent rust prevention effect over a long period of time.

Treatment

Features

●It is effective in preventing rust on metals such as copper, silver, and aluminum. In addition, it can be expected to have the effect of imparting adhesion to metals.

Applications Chemical Structure

- Piping, etc. Copper,
- silver plating, etc. Metal parts for electrical products, etc.

General Properties

Product name	X-12-1214A		
Appearance	Pale yellow transparent liquid		
Active ingredient %	100		
Viscosity at 25°C mm²/s	170		

(Not specified values)

Treatment

Treatment

Protected Functional Group Silane Coupling Agents

The functional groups of these silane coupling agents are protected. This means they can be added at the same time to systems that would otherwise be too reactive, and this enables use of a one-component product where a two-component product would have been necessary.

Features

Can be added to organic materials with which silane coupling agents could not normally be used.

Product List

Product name	Functional group
X-12-1056ES	Protected mercapto group silane coupling agent
KBE-9103P	Protected amino group (ketimine type)
X-12-1172ES	Protected amino group (aldimine type)
X-12-967C	Acid anhydride type

Model of Chemical Structure

Benefit of Protecting Functional Groups

Model for Improving Stability in Resin

Conventional grade Reaction starts immediately after product is added to resin.

Silane

Substrate

Protected functional group type Functional groups are protected. Product does not react after addition to resin and stability is high. (One-component product can be used.)

Stability after addition to various resins

Shelf life of KBE-9103P in epoxy resin Formulation

Resin

Epoxy resin...50 wt. part Silane coupling agent...5 wt. part Toluene......50 wt. part

Test Result of Viscosity

Product name Condition	No additive	KBE-9103P	KBE-903
After 3 days mm ² /s	4.2	4.4	7.8
After 14 days mm ² /s	4.3	4.7	8.6
		(NI-+	

(Not specified values)

Change in viscosity when mixed with isocyanate compound

Formulation

Isocyanate compound95 wt. part Silane coupling agent5 wt. part

Application of Urethane Adhesive

Tensile Lap-shear Strength Test Result of Urethane Adhesive

*The protective groups are removed by water or moisture, then the reaction begins

Adhesion test with KBE-9103P internal addition adhesive Formulation

Epoxy resin......50 wt. part Triethylenetetramine...5 wt. part Silane coupling agent...5 wt. part

Tensile Strength Test Result with Aluminum

Product name Condition		No additive	KBE-9103P	KBE-903	
Initial MP	а	3.9	7.6	6.1	
Water resistance test MPa 95°C×10 h		3.4	6.4	5.2	
			(Not co	cified values)	

Test Result of Vis	Aromatic	isocyanate			
Product name Condition	No additive	X-12-1056ES	X-12-1172ES	KBM-803	
Initial mPa·s	222	139	174	119	
After 50°C×1 week mPa·s	223	176	380	2,070	

(Not specified values)

Formulation :

Urethane polymer containing NCO····100 wt. part Plasticizer40 wt. part Catalyst0.1 wt. part Silane coupling agent1.0 wt. part

Curing conditions : 23°C/50%RH×3 days

Substrate : Glass

VOC Free Silane Coupling Agents

All the alkoxysilyl groups are silanols, which means the amount of methanol or ethanol released is reduced by 99% or more. The alcohol normally released when a conventional silane coupling agent undergoes hydrolysis can be minimized.

(Ex.) When 100 kg of KBE-903 is hydrolyzed, 62 kg of ethanol is released. Users are looking to eliminate VOCs from their operations.

♦Features	Resulting	Model of Chemical Structure				
 The step of hydrolysis can be eliminated. The amount of alcohol released is reduced by 99% or more. Nonflammable Lower amounts of VOCs released 	Properties •Primer •Surface treatment •Binder •Mixing with water paints	Organic functional	ОН —Si—О- ОН	OH -Si OH	Organic functional group	

Product List

Product name	Organic functional groups	Active ingredient wt%	Solvent	pH*
KBP-90	Amine -NH ₂	30	Water	10-12
X-12-1353	Amine, vinyl -NH ₂ and -CH=CH ₂	20	Water	10-12
X-12-1353M	Amine, methyl -NH ₂ and -CH ₃	20	Water	10-12
KBP-64	Ethylenediamine+ <i>α</i> -NH-C ₂ H ₄ -NH ₂	30	Water	10-12
X-12-954	Ethylenediamine -NH-C ₂ H ₄ -NH ₂	30	Water	10-12
X-12-1135	Carboxylic acid -COOH	30	Water	1-3
X-12-1139	Quaternary ammonium -NMe ₂ C ₁₈ H ₃₇ +Cl ⁻	30	Water	8-10
X-12-1126	Quaternary ammonium -NMe₃⁺Cl⁻	30	Water	8-10

*Stability suffers once pH is outside this zone.

(Not specified values)

VOC Free / Dialkoxy / oxy Silane Couplin Agents

Shin-Etsu's silane products are a group of organosilicon compounds comprised of alkoxy silanes and silazanes. Silanes have many applications in a wide variety of fields.

They are commonly applied to the surface of inorganic substrates to improve water repellency, added to inorganic fillers to improve their dispersibility in organic polymers, and used for surface modification of inorganic materials.

♦ General Properties

Туре	Product name Chemical name Structural formula		Molecular weight	Specific gravity at 25℃	Refractive index at 25℃	Boiling point ℃	Flash point ℃	Minimum covering area m²/g	UN hazard classification	METI No.	CAS No.	
	KBM-13	Methyltrimethoxysilane	(CH₃O) ₃SiCH₃	136.2	0.95	1.369	102	8*1	573	UN-1993	2-2052	1185-55-3
	KBM-22	Dimethyldimethoxysilane	(CH ₃ O) ₂ Si (CH ₃) ₂	120.2	0.86	1.371	82	-10*1	649	UN-1993	2-2052	1112-39-6
	KBM-103	Phenyltrimethoxysilane	(CH₃O) ₃SiC₅H₅	198.3	1.06	1.473	218	94*2	393	Not applicable	3-2635	2996-92-1
,pe	KBM-202SS	Diphenyldimethoxysilane	(CH3O)2Si(C6H5)2	244.4	1.08	1.541	304	145*2	320	UN-3082	3-2635	6843-66-9
xy ty	KBM-3033	n-Propyltrimethoxysilane	(CH3O) 3Si (CH2) 2CH3	164.3	0.93	1.388	142	36*1	475	UN-1993	2-2052	1067-25-0
etho	KBM-3063	Hexyltrimethoxysilane	(CH3O) 3Si (CH2) 5CH3	206.4	0.91	1.406	202	81*2	378	Not applicable	2-2052	3069-19-0
Š.	KBM-3103C	Decyltrimethoxysilane	(CH₃O) ₃Si (CH₂) ໑CH₃	262.5	0.90	1.421	132℃/ 1.3kPa	122*1	297	Not applicable	2-3512	5575-48-4
	KBM-3066	1,6-Bis(trimethoxysilyl) hexane	(CH3O)3Si(CH2)6Si(OCH3)3	326.5	1.02	1.420	161℃/ 0.26kPa	164*2	239	Not applicable	2-3732	87135-01-1
	KBM-7103	Trifluoropropyl- trimethoxysilane	(CH ₃ O) ₃ SiCH ₂ CH ₂ CF ₃	218.2	1.14	1.352	144	23*1	357	UN-1993	2-2079	429-60-7
	KBE-04	Tetraethoxysilane	(C₂H₅O)₄Si	208.3	0.93	1.381	168	54*1	375	UN-1292	2-2048	78-10-4
	KBE-13	Methyltriethoxysilane	(C₂H₅O) ₃SiCH₃	178.3	0.89	1.383	143	40*1	437	UN-1993	2-2052	2031-67-6
be	KBE-22	Dimethyldiethoxysilane	(C2H5O) 2Si (CH3) 2	148.3	0.83	1.384	114	15*1	526	UN-2380	2-2052	78-62-6
ky ty	KBE-103	Phenyltriethoxysilane	(C₂H₅O) ₃SiC6H₅	240.4	0.99	1.459	236	111*2	324	Not applicable	3-2635	780-69-8
Etho	KBE-3033	n-Propyltriethoxysilane	(C2H5O) 3Si (CH2) 2CH3	206.4	0.89	1.394	179	57*1	378	UN-1993	2-2052	2550-02-9
ш -	KBE-3063	Hexyltriethoxysilane	(C2H5O) 3Si (CH2) 5CH3	248.4	0.88	1.408	120.6℃/ 2.8kPa	97*1	314	Not applicable	2-2052	18166-37-5
	KBE-3083	Octyltriethoxysilane	(C2H5O) 3Si (CH2) 7CH3	276.5	0.88	1.415	98℃/ 10.27kPa	126*2	282	Not applicable	2-3784	2943-75-1
Silazane	SZ-31	Hexamethyldisilazane	(CH₃)₃SiNHSi (CH₃)₃	161.4	0.77	1.408 (20℃)	126	14*1	967	UN-3286	2-2955 or 2-2044	999-97-3
Siloxane	KPN-3504	Siloxane with hydrolyzable groups	Proprietary	_	0.97	1.405	_	190*2	_	Not applicable	Registered	_

*1: Closed cup *2: Open cup

%1 kPa: 7.5 mmHg

(Not specified values)

Reaction of SZ-31

In this reaction, hydrolysis results in formation of ammonia.

Water repellency (surface properties)

1. Water repellency (on glass substrate)

1 / *	0
Silane	Water contact angle (°)
KBM-13	63
SZ-31	66
KBM-3103C	84

2. Surface energy reduction

Critical surface tension of silane treated surfaces (γ crit)

Silane	γc(mN/m)
KBM-7103	20.6
KBM-13	22.5
KBM-103	40.0

Condensation reaction properties

Condensation behavior of methyl and phenyl silanes

Trifunctional type

In comparing methyltrimethoxysilane (KBM-13) with phenyltrimethoxysilane (KBM-103), it was found that condensation proceeds more slowly for phenyltrimethoxysilane.

Conditions: silane 2%, acetic acid 0.3%, ethanol 50%, water 48%, temp. at 28°C

Difunctional type

In comparing dimethyldimethoxysilane (KBM-22) with diphenyldimethoxysilane (KBM-202SS), it was found that condensation proceeds more slowly for diphenyldimethoxysilane.

Product Features & Packaging Options

Functional group	Product name	Chemical name	Molecular weight	Specific gravity at 25℃
	KBM-1003	Vinyltrimethoxysilane	148.2	0.97
Vinvl	KBE-1003	Vinyltriethoxysilane	190.3	0.90
vinye	KBM-1083	7-Octenyltrimethoxysilane	232.4	0.92
	X-12-1290	Organosilane	-	1.17
	KBM-303	2-(3,4 epoxycyclohexyl) ethyltrimethoxysilane	246.4	1.06
	KBM-402	3-Glycidoxypropyl methyldimethoxysilane	220.3	1.02
	KBM-403	3-Glycidoxypropyl trimethoxysilane	236.3	1.07
	KBE-402	3-Glycidoxypropyl methyldiethoxysilane	248.4	0.98
Ероху	KBE-403	3-Glycidoxypropyl triethoxysilane	278.4	1.00
	KBM-4803	8-Glycidoxyoctyltrimethoxysilane	306.5	1.01
	X-12-981S	Organosilane	-	1.11
	X-12-984S	Organosilane	-	1.16
	KR-516	Siloxane	-	1.15
Styrene	KBM-1403	p-Styryltrimethoxysilane	224.3	1.06
	KBM-502	3-Methacryloxypropyl methyldimethoxysilane	232.4	1.00
	KBM-503	3-Methacryloxypropyl trimethoxysilane	248.4	1.04
Methacryloxy	KBE-502	3-Methacryloxypropyl methyldiethoxysilane	260.4	0.96
	KBE-503	3-Methacryloxypropyl triethoxysilane	290.4	0.99
	KBM-5803	8-Methacryloxyoctyltrimethoxysilane	318.5	0.99
	KBM-5103	3-Acryloxypropyl trimethoxysilane	234.3	1.06
Acryloxy	X-12-1048	Organosilane	-	1.15
Actyloxy	X-12-1050	Organosilane	-	1.19
	KR-513	Siloxane	-	1.15
	KBM-602	N-2-(Aminoethyl)-3-aminopropylmethyldimethoxysilane	206.4	0.97
	KBM-603	N-2-(Aminoethyl)-3-aminopropyltrimethoxysilane	222.4	1.02
	KBM-903	3-Aminopropyltriethoxysilane	179.3	1.01
Amina	KBE-903	3-Aminopropyltriethoxysilane	221.4	0.94
	KBE-9103P	3-Triethoxysilyl-N-(1,3 dimethyl-butylidene) propylamine	-	0.92
	X-12-1172ES	Organosilane	-	1.01
	KBM-573	N-Phenyl-3-aminopropyltrimethoxysilane	255.4	1.07
	KBM-575	N-(Vinylbenzyl)-2-aminoethyl-3-aminopropyltrimethoxysilane hydrochloride (Active ingredients 40% methanol solution)	-	0.91
	KBM-6803	N-2-(aminoethyl)-8-aminooctyltrimethoxysilane	292.5	0.97
	X-12-972F	Organosilane (Active ingredients 15% ethanol solution)	-	0.83

Refractive index			Minimum	UN hazard	Packaging		
at 25℃	Boiling point C	Flash point C	m²/g	classification	1 L cans	18 L cans	200 L drums
1.391	123	23	526	UN-1993	1 kg	18 kg	180 kg
1.397	161	54	410	UN-1993	1 kg	17 kg	180 kg
1.423	100℃/0.93 kPa	122	336	Not applicable	1 kg	16 kg	-
1.483	-	190	-	Not applicable	1 kg	18 kg	-
1.448	310	163	317	Not applicable	1 kg	16 kg	200 kg
1.432	112℃/0.67 kPa	134	354	Not applicable	1 kg	16 kg	180 kg
1.427	290	149	330	Not applicable	1 kg	16 kg	200 kg
1.431	259	128	314	Not applicable	1 kg	16 kg	180 kg
1.425	124℃/0.39 kPa	144	280	Not applicable	1 kg	16 kg	200 kg
1.438	160℃/0.004 kPa	180	254	Not applicable	1 kg	16 kg	-
1.465	-	193	-	Not applicable	1 kg	-	-
1.474	-	193	-	Not applicable	1 kg	-	-
1.441	-	184	-	Not applicable	1 kg	18 kg	-
1.504	115℃/0.001 kPa	136	348	Not applicable	1 kg	16 kg	-
1.433	83℃/0.39 kPa	115	335	Not applicable	1 kg	16 kg	200 kg
1.429	255	125	314	Not applicable	1 kg	16 kg	200 kg
1.432	265	136	300	Not applicable	1 kg	16 kg	200 kg
1.427	129℃/0.67 kPa	128	270	Not applicable	1 kg	16 kg	200 kg
1.439	145℃/0.004 kPa	186	245	Not applicable	1 kg	16 kg	-
1.427	102℃/0.53 kPa	126	333	Not applicable	1 kg	16 kg	200 kg
1.453	-	166	-	Not applicable	1 kg	16 kg	-
1.481	-	194	-	Not applicable	1 kg	16 kg	-
1.450	-	192	-	Not applicable	1 kg	18 kg	-
1.447	234	110	378	Not applicable	1 kg	16 kg	200 kg
1.442	259	128	351	Not applicable	1 kg	16 kg	200 kg
1.422	215	88	435	Not applicable	1 kg	16 kg	200 kg
 1.420	217	98	352	UN-3267	1 kg	16 kg	180 kg
1.437	-	134	-	Not applicable	1 kg	16 kg	180 kg
1.491	-	146	-	Not applicable	1 kg	-	-
1.504	312	165	305	Not applicable	1 kg	16 kg	200 kg
-	-	11	-	UN-1992	-	15 kg	160 kg
1.447	180℃/0.9 kPa	164	267	Not applicable	1 kg	16 kg	-
-	-	12	-	UN-2924	1 kg	16 kg	-

(Not specified values)

Product Features & Packaging Options

Functional group	Product name	Chemical name	Molecular weight	Specific gravity at 25℃
Ureide	KBE-585A	3-Ureidopropyltrialkoxysilane (Active ingredients 50% alcohol solution)	-	0.91
	KBM-585	3-Ureidopropyltrimethoxysilane	222.3	1.15
Isocyanate	KBE-9007N	3-Isocyanatepropyltriethoxysilane	247.4	1.00
	X-12-1159L	Organosilane	-	1.17
Isocyanurate	KBM-9659	Tris-(trimethoxysilylpropyl)isocyanurate	615.8	1.18
	KBM-802	3-Mercaptopropylmethyldimethoxysilane	180.3	1.00
	KBM-803	3-Mercaptopropyltrimethoxysilane	196.4	1.06
Mercapto	X-12-1154	Organosilane	-	1.26
	X-12-1056ES	Organosilane	-	1.05
Acid anhydride	X-12-967C	3-(Trimethoxysilyl)propylsuccinic anhydride	262.1	1.17
Benzotriazole	X-12-1214A	Organosilane	-	1.21
Liquid rubber type	X-12-1267B-ES	Organosilane	-	0.94

♦VOC Free Type

Product name	Features	Appearance	
KBP-90	Amine type	Colorless to yellow liquid	
X-12-1353	Amine, vinyl type	Colorless to yellow liquid	
X-12-1353M	Amine, methyl type	Colorless to yellow liquid	
KBP-64	Ethylenediamine $+\alpha$ type	Colorless to yellow liquid	
X-12-954	Ethylenediamine type	Colorless to yellow liquid	
X-12-1135	Carboxylic acid type	Colorless to yellow liquid	
X-12-1139	Quaternary ammonium type	Colorless to pale yellow liquid	
X-12-1126	Quaternary ammonium type	Colorless to yellow liquid	

	Refractive index at 25℃	Boiling point °C	Flash point °C	Minimum covering area m²/g	UN hazard classification	Packaging		
						1 L cans	18 L cans	200 L drums
	-	-	11	-	UN-1992	1 kg	16 kg	180 kg
	1.461	-	182	351	Not applicable	1 kg	16 kg	180 kg
	1.418	250	118	315	UN-2927	1 kg	15 kg	-
	1.500	-	228	-	Not applicable	1 kg	-	-
	1.458	250 <	186	125	Not applicable	1 kg	18 kg	200 kg
	1.448	204	72	432	UN-3082	1 kg	18 kg	200 kg
	1.440	219	107	398	UN-3082	1 kg	18 kg	200 kg
	1.514	-	218	-	UN-3082	1 kg	16 kg	-
	1.435	-	160	-	Not applicable	1 kg	16 kg	-
	1.446	178 - 182	190	298	Not applicable	1 kg	16 kg	-
	1.524	-	168	-	Not applicable	1 kg	18 kg	-
	1.480	-	294	-	Not applicable	1 kg	18 kg	180 kg

_ _ ____

(Not specified values)

Active ingredients wt% Solvent UN hazard classification		Packaging		
30	Water	Not applicable	1 kg	16 kg
20	Water	Not applicable	1 kg	16 kg
20	Water	Not applicable	1 kg	-
30	Water	Not applicable	1 kg	18 kg
30	Water	Not applicable	1 kg	16 kg
30	Water	Not applicable	1 kg	16 kg
30	Water	Not applicable	1 kg	-
30	Water	Not applicable	1 kg	16 kg

Here are some of the questions we frequently get from customers. Check here first to see if your own question has been answered.

Category	Question	Answer
	Which to use, methoxysilyl groups or ethoxysilyl groups?	Among the alkoxysilyl groups, methoxysilyl groups hydrolyze faster than ethoxysilyl groups. Please refer to P8 for data on the hydrolyz- ability of alkoxysilyl groups. Methoxysilyl groups hydrolyze to form methanol, while ethoxysilyl groups hydrolyze to form ethanol. If you are concerned about the release of methanol, you should use ethoxysilyl groups (KBE Series).
Selecting silane coupling agents	Which to use, trialkoxysilyl groups or dialkoxysilyl groups?	Whereas the hydrolytic condensation of trialkoxysilyl groups leads to three-dimensional crosslinking, hydrolytic condensation of dialkoxysilyl groups leads to two-dimensional crosslinking. This means that dialkoxysilyl groups will be more stable when prepared in an aqueous solution. However, because trialkoxysilyl groups will have a higher crosslinking density with the substrate, adhesion will often be higher.
	How do I select the right organic functional group?	Choosing the optimal organic functional groups will depend on the resin or substrate with which they are used. Please see P9 for a chart of organic functional groups and applicable resins.
	Which resins will show improved adhesion with Silane coupling agents, and which won't?	For a guide on which types of silanes are effective with which resins, see the chart on P9 (Organic functional groups and applicable resins).
Obtaining samples	How can I obtain samples?	Contact us via the form on our website (https://www.shinetsusilicone-global.com/showInquiry.do), or talk to a Shin-Etsu distributor.
Preparation method	How do I determine how much silane to use?	The optimal amount can be determined based on the specific surface area of the filler and the minimal coverage area of the silane (Product List on P10–11, Product Characteristics & Packaging Options on P20–23) (See Note 1). As a rough guide, try using 0.5–2.0 wt% silane vs. the weight of the filler. The user should also be aware that silane coupling agents will be more effective with some types of fillers than with others.
Using silane	Treating the filler in advance vs. the integral blend method: Do the results differ?	The typical pretreatment method is to treat the inorganic filler first, then mix it into the organic material. In the integral blend method, the inorganic filler, resin and silane are all added at once, with no pretreatment involved. With the integral blend method, there may be some evaporation of the silane if the materials are heat-treated immediately after mixing. We recommend heating after a suitable curing period. (See Note 2)
	What are some tips regarding treatment methods?	For best results, wash the surface of the inorganic material to remove oils, then treat with a primer.
	What are the drying conditions?	To evaporate the water and initiate the dehydration condensation reaction, we recommend drying at 80–120°C. (See Note 3)

Note 1

Treatment amount

The amount of treatment used for fillers is normally 0.5–2% by weight.

The model equation here can be used as a guide with respect to the amount of silane required to surface-treat fillers to produce a monomolecular film on the filler particles.

Silane treatment amount (g) = $\frac{\text{Weight of filler (g) } \times}{\text{Minimum covering area of filler (m²/g)}}$

Note 2

Effects of aging on organic resin blends Application to polyester resin

When coupling agents are added via the integral blending method and aged at room temperature, the coupling agent migrates to the interface with the inorganic material. The effect is close to that achieved with pretreated glass fiber cloth.

Category	Question	Answer		
	Can materials be treated with silane coupling agents via vapor deposition?	Yes. See Note 4 for the vapor pressure curves of some commonly used products.		
Using silane coupling agents	I'm going to polymerize the silane to make a coating agent. Do different silanes have different degrees of heat resistance?	See Note 5 for heat loss data for the hydrolysis products of some commonly used products.		
	Which types of silane coupling agents will be stable when prepared as an aqueous solution?	Aminosilanes are the most stable, and epoxysilanes (KBM-403) are also stable. (See Note 6)		
Evaluating performance	How can I check the silane treatment?	A simple means of evaluating hydrophobically-treated fillers is the methanol wettability test (See Note 7) . For more detailed analysis, 29Si NMR is also effective.		
	What are some precautions when storing silane coupling agents?	As a general rule, silane coupling agents should be stored only in their original containers. Silane coupling agents hydrolyze when exposed to moisture, so they should be used as quickly as possible after opening. If the product is not used up, the container should be purged with nitrogen before storage.		
Storage	How should hydrolyzed treatment liquids be stored?	The storage method may differ depending on the type and number of alkoxy groups, and the type, concentration and pH of the organic functional groups (See Note 8). Also, adding alcohol will improve shelf life and wetting of inorganic materials.		
	How should I store pretreated inorganic materials or resins to which silanes have been added?	The filler surface will be stable after dehydration condensation. Once Silane coupling agents have been added or grafted to resins, moisture control is critical. Be sure to store in a cool, dark place that is as dry as possible.		
Disposal	How can I dispose of leftover liquids and old samples?	Be sure to follow the instructions on the Safety Data Sheet. Shin-Et- su does not take back leftover liquids or old samples for disposal.		
	What are some precautions for cleaning equipment after use?	Clean filters, tanks and lines immediately after use. These can typically be cleaned with solvents or alkaline cleaners. (See Note 9)		
Other	What are the laws and regulations concerning export to foreign countries?	There are restrictions on countries that can be exported to and on applications and quantities. These are subject to change. Also, containers may differ, so check with a sales representative for details.		

Note 3

Change in performance caused by dehydration condensation reaction

Comparison of treatment of polyester laminates

We compared the effects of different drying conditions on effectiveness of treatment. It was found that drying the silane coupling agent for around 5 minutes at 110°C after application achieved the best results.

Note 4

Vapor pressure curve

Most silane coupling agents are compounds that have boiling points, and have vapor pressures which are unique to each compound.

The graph below shows the relationship between vapor pressure and temperature for some typical silane coupling agents.

Q & A

Note 7

Checking the results of hydrophobic treatment

Weigh out 0.5 g of the sample into a 500 mL erlenmeyer flask.
 Add 50 mL of ion-exchange softened water to ① and agitate with a magnetic stirrer.

- ③ While continuing agitation, drip in methanol using a burette. When all of the sample is in suspension in the softened water, note the amount of methanol that has been dripped in.
- ④ Determine hydrophobicity using the following equation.

Hydrophobicity = <u>Methanol drip amount (mL) × 100</u> <u>Methanol drip amount (mL) +</u> Ion-exchange softened water amount (mL)

Note 9

Cleaning silane from reactors, containers, pipes, etc.

The following methods are good for cleaning, but keep in mind that results will vary depending on the type of silane (hydrophilic, hydrophobic), the material being cleaned (glass, metal, plastic), whether the silane has simply adhered to or has reacted onto the surface, and how much has built up. Use proper caution when handling solvents and alkalis.

1. Cleaning with solvents

This method involves cleaning off the silane by placing equipment in an organic solvent (alcohol, aromatic solvent, etc.). Agitation and heating will yield better cleaning results. With some physical effort,

such as scrubbing with a brush, the results will be even better. Clean the insides of pipes by flushing them with large amounts of solvent.

2. Cleaning with alkalis

If the silane has reacted to the surface or has built up in significant amounts, cleaning with a solvent will not be sufficient. If so, the silane can be removed by placing equipment in an alkaline water solution (e.g. 50% potassium hydroxide-water solution). Again, agitation and heating will yield better cleaning results. When cleaning stainless steel, the solution can be heated to around 80°C without problems. However, glass-lined equipment will be damaged at this temperature, so such equipment should not be soaked more than a few hours at temperatures not higher than around 50°C. After cleaning, be sure to remove the alkaline component by washing thoroughly with water or alcohol.

▲ Handling Precautions

Product quality, storage and handling

1. Store in a cool, dark place (out of direct sunlight in a place cooler than room temperature where there is no risk of condensation) and avoid exposure to humidity.

Products containing silanes that polymerize with heat (KBM-1403, KBM-5103, X-12-1048, X-12-1050) should be kept refrigerated (0–5°C).

2. Shin-Etsu guarantees the quality of its silane coupling agents when in a sealed, unopened state. When exposed to water or moisture, silane coupling agents undergo hydrolysis and degrade, and in the process will release substances which include methanol and hydrogen chloride. Do not leave product containers open, and always close tightly after use to prevent water and moisture from entering the container. Ideally, when closing containers, the air in the container should be replaced with dry nitrogen.

After opening, products should be used up as quickly as possible, since products stored in bottles may become degraded through exposure to the alkali content of the glass.

3. Isocyanate silane and protected functional group silanes cannot be used as part of pretreatment methods that involve adding them to water to induce hydrolysis. Isocyanate silanes will release carbon dioxide gas and deteriorate, while protected functional group silanes will lose their protective groups and deteriorate.

Safety & hygiene

- 1. Ensure there is proper ventilation when using these products. Avoid breathing of vapors from products or their hydrolysis products, and avoid bodily contact.
- 2. Wear rubber gloves, safety glasses and other protective gear to prevent contact with the skin and mucous membranes. In case of contact, wash immediately and thoroughly with running water.
- 3. In case of eye contact, immediately flush eyes with plenty of running water, and consult a physician if necessary.
- 4. If products get on clothing, wash off with running water.
- 5. Be sure to wash hands thoroughly after handling products and before eating, drinking or smoking.
- 6. In case of spills, wash with plenty of water or soak up the spilled liquid using rags or sand and dispose of it by incineration.
- 7. Keep out of reach of children.
- 8. Please read the Safety Data Sheets (SDS) before use. SDS can be obtained from our Sales Department.

Additional information

- If you need a special high purity product for use in electronics materials manufacturing or other application, please discuss your needs with a Shin-Etsu sales representative.
- 2. Contact the Shin-Etsu Sales Department to discuss issues concerning the export of these products.

Silicone Division Sales and Marketing Department ${\rm I\hspace{-0.5mm}I}$

Marunouchi Eiraku Bldg., 4-1, Marunouchi 1-chome, Chiyoda-ku, Tokyo 100-0005, Japan Phone : +81-(0)3-6812-2407 Fax : +81-(0)3-6812-2414

Shin-Etsu Silicones of America, Inc.

1150 Damar Drive, Akron, OH 44305, U.S.A. Phone : +1-330-630-9860 Fax : +1-330-630-9855

Shin-Etsu do Brasil Representação de Produtos Químicos Ltda.

Rua Coronel Oscar Porto, 736 - 8°Andar - Sala 84, Paraíso São Paulo - SP Brasil CEP: 04003-003 Phone : +55-11-3939-0690 Fax : +55-11-3052-3904

Shin-Etsu Silicones Europe B.V.

Bolderweg 32, 1332 AV, Almere, The Netherlands Phone : +31-(0)36-5493170 Fax : +31-(0)36-5326459 (Products & Services: Products for Cosmetics Application)

Germany Branch

Kasteler Str. 45, 65203 Wiesbaden, Germany Phone : +49-(0)611-71187290 (Products & Services: Products for Industrial Applications)

Shin-Etsu Silicone Korea Co., Ltd.

GT Tower 15F, 411, Seocho-daero, Seocho-gu, Seoul 06615, Korea Phone : +82-(0)2-590-2500 Fax : +82-(0)2-590-2501

Shin-Etsu Silicone International Trading (Shanghai) Co., Ltd.

29F Junyao International Plaza, No.789, Zhao Jia Bang Road, Shanghai 200032, China Phone : +86-(0)21-6443-5550 Fax : +86-(0)21-6443-5868

Guangzhou Branch

Room 2409-2410, Tower B, China Shine Plaza, 9 Linhexi Road, Tianhe, Guangzhou, Guangdong 510610, China Phone : +86-(0)20-3831-0212 Fax : +86-(0)20-3831-0207

- The data and information presented in this catalog may not be relied upon to represent standard values. Shin-Etsu reserves the right to change such data and information, in whole or in part, in this catalog, including product performance standards and specifications without notice.
- Users are solely responsible for making preliminary tests to determine the suitability of products for their intended use.
 Statements concerning possible or suggested uses made herein may not be relied upon, or be construed, as a guaranty of no patent infringement.
- For detailed information regarding safety, please refer to the Safety Data Sheet (SDS).
- The silicone products described herein have been designed, manufactured and developed solely for general industrial use only; such silicone products are not designed for, intended for use as, or suitable for, medical, surgical or other particular purposes. Users have the sole responsibility and obligation to determine the suitability of the silicone products described herein for any application, to make preliminary tests, and to confirm the safety of such products for their use.

Shin-Etsu Silicone Taiwan Co., Ltd.

Hung Kuo Bldg. 11F-D, No. 167, Tun Hua N. Rd., Taipei, 105406 Taiwan, R.O.C. Phone : +886-(0)2-2715-0055 Fax : +886-(0)2-2715-0066

Shin-Etsu Singapore Pte. Ltd.

1 Kim Seng Promenade #15-05/06 Great World City East Tower, Singapore 237994 Phone : +65-6743-7277 Fax : +65-6743-7477

Shin-Etsu Silicones Vietnam Co., Ltd.

Unit 4, 11th Floor, A&B Tower, 76A Le Lai Street, Ben Thanh Ward, District 1, Ho Chi Minh City, Vietnam Phone : +84-(0)28-35355270

Shin-Etsu Silicones India Pvt. Ltd.

Unit No. 403A, Fourth Floor, Eros Corporate Tower, Nehru Place, New Delhi 110019, India Phone : +91-11-43623081 Fax : +91-11-43623084

Shin-Etsu Silicones (Thailand) Ltd.

7th Floor, Harindhorn Tower, 54 North Sathorn Road, Silom Bangrak, Bangkok 10500, Thailand Phone : +66-(0)2-632-2941 Fax : +66-(0)2-632-2945

- Users must never use the silicone products described herein for the purpose of implantation into the human body and/or injection into humans.
- Users are solely responsible for exporting or importing the silicone products described herein, and complying with all applicable laws, regulations, and rules relating to the use of such products. Shin-Etsu recommends checking each pertinent country's laws, regulations, and rules in advance, when exporting or importing, and before using the products.
- Please contact Shin-Etsu before reproducing any part of this catalog. Copyright belongs to Shin-Etsu Chemical Co., Ltd.

,			The Development and Manufacture of Shin-Etsu Silicones are based on the following registered international quality and environmental management standards.				
		Ciwous	Gunma Complex	ISO 9001 (JCQA-0004	ISO 14001 JCQA-E-0002)		
		B	Naoetsu Plant	ISO 9001 (JCQA-0018	ISO 14001 JCQA-E-0064)		
	100 14001	MS CM009	Takefu Plant	ISO 9001 (JQA-0479	ISO 14001 JQA-EM0298)		

"Shin-Etsu Silicone" is a registered trademark of Shin-Etsu Chemical Co., Ltd. https://www.shinetsusilicone-global.com/