1. Silicone rubber: general properties

<table>
<thead>
<tr>
<th>Classification</th>
<th>Dynamic fatigue durability</th>
<th>Vibration control</th>
<th>For power connector</th>
<th>Anti-static silicone rubber compound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade</td>
<td>KE-9511-U</td>
<td>KE-5550-U</td>
<td>KE-961-U</td>
<td>KE-971-U</td>
</tr>
<tr>
<td>Appearance</td>
<td>Milky white translucent</td>
<td>Pale yellow</td>
<td>Milky white translucent</td>
<td>Light gray</td>
</tr>
<tr>
<td>Density 23°C</td>
<td>1.12</td>
<td>1.10</td>
<td>1.10</td>
<td>1.15</td>
</tr>
<tr>
<td>Williams plasticity (10 min after remix)</td>
<td>200</td>
<td>170</td>
<td>170</td>
<td>220</td>
</tr>
<tr>
<td>Curing agent Curing agent name</td>
<td>C-8A</td>
<td>C-8B</td>
<td>C-8</td>
<td>C-15</td>
</tr>
<tr>
<td>Standard addition quantity</td>
<td>0.6</td>
<td>1.0</td>
<td>2.0</td>
<td>1.5</td>
</tr>
<tr>
<td>Linear shrinkage%</td>
<td>3.3</td>
<td>3.9</td>
<td>5.2</td>
<td>3.9</td>
</tr>
<tr>
<td>Hardness Durometer A</td>
<td>50</td>
<td>54</td>
<td>52</td>
<td>53</td>
</tr>
<tr>
<td>Tensile strength MPa</td>
<td>6.6</td>
<td>7.7</td>
<td>9.3</td>
<td>7.7</td>
</tr>
<tr>
<td>Elongation at break %</td>
<td>310</td>
<td>450</td>
<td>730</td>
<td>520</td>
</tr>
<tr>
<td>Tear strength crescent piece kN/m</td>
<td>6</td>
<td>15</td>
<td>38</td>
<td>19</td>
</tr>
<tr>
<td>Compression set 180°C x 22 h</td>
<td>8</td>
<td>20</td>
<td>13</td>
<td>22</td>
</tr>
<tr>
<td>Dielectric breakdown kV Normal state</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Volume resistivity Normal state</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Measurement: in accordance with JIS K 6249 Test pieces: 165°C x 10 min (press cure), 200°C x 4 h (post cure) (Not specified values)

1 Standard addition quantity is the quantity of curing agent added to 100 parts compound.
2 Linear shrinkage values differ according to the curing agent used.
3 Angle piece
4 Measured values at 150°C x 22 h.

[Unit conversion] tensile strength: 10 kgf/cm² = 0.98 MPa; tear strength: 1 kgf/cm = 0.98 kN/m; volume resistivity: 10¹⁴ Ω·cm = 1 TΩ·cm.
Silicone Rubber

Performance Test Results

<table>
<thead>
<tr>
<th>Classification</th>
<th>For general extrusion molding, FDA, BfR</th>
<th>For tubing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>Milky white translucent</td>
<td>Milky white translucent</td>
</tr>
<tr>
<td>Density 23°C g/cm³</td>
<td>1.10 KE-541-U</td>
<td>1.16 KE-153-U</td>
</tr>
<tr>
<td>Williams plasticity (10 min after remix)</td>
<td>150 KE-551-U</td>
<td>260 KE-174-U</td>
</tr>
<tr>
<td>Curing agent</td>
<td>Curing agent name</td>
<td>Curing agent name</td>
</tr>
<tr>
<td>Standard addition quantity</td>
<td>1.0 KE-561-U</td>
<td>0.5/2.0 KE-571-U</td>
</tr>
<tr>
<td>Linear shrinkage</td>
<td>3% KE-581-U</td>
<td>3% KE-153-U</td>
</tr>
<tr>
<td>Hardness Durometer A</td>
<td>40 KE-154-U</td>
<td>53 KE-174-U</td>
</tr>
<tr>
<td>Tensile strength MPa</td>
<td>8.0 KE-155-U</td>
<td>10.0 KE-155-U</td>
</tr>
<tr>
<td>Elongation at break %</td>
<td>550 KE-156-U</td>
<td>650 KE-155-U</td>
</tr>
<tr>
<td>Tear strength (crescent piece kN/m)</td>
<td>10 KE-157-U</td>
<td>36 KE-155-U</td>
</tr>
<tr>
<td>Compression set 180°C x 22 h</td>
<td>12 KE-158-U</td>
<td>36 KE-155-U</td>
</tr>
<tr>
<td>Dielectric breakdown strength Normal state kV</td>
<td>— KE-159-U</td>
<td>— KE-155-U</td>
</tr>
<tr>
<td>Volume resistivity Normal state TΩ·m</td>
<td>30 KE-160-U</td>
<td>900 KE-160-U</td>
</tr>
</tbody>
</table>

(Not specified values)

Classification

High strength

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>Pale yellow</td>
<td>Milky white translucent</td>
<td>White</td>
<td>Black</td>
<td>Charcoal</td>
<td>Translucent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curing agent</td>
<td>Curing agent name</td>
</tr>
<tr>
<td>Standard addition quantity</td>
<td>2.0 KE-555-U</td>
<td>2.0 KE-575-U</td>
<td>2.0 KE-520-U</td>
<td>2.0 KE-530B-2-U</td>
<td>2.0 KE-540B-2-U</td>
<td>2.0 KE-5620W-U</td>
<td>2.0 KE-5620BL-U</td>
<td>2.0 KE-5612E-U</td>
<td>2.0 KE-5634-U</td>
</tr>
<tr>
<td>Linear shrinkage</td>
<td>4.0 KE-555-U</td>
<td>4.0 KE-575-U</td>
<td>4.5 KE-520-U</td>
<td>4.5 KE-530B-2-U</td>
<td>4.5 KE-540B-2-U</td>
<td>3.1 KE-5620W-U</td>
<td>3.1 KE-5620BL-U</td>
<td>3.2 KE-5612E-U</td>
<td>3.4 KE-5634-U</td>
</tr>
</tbody>
</table>

(Not specified values)

1. Standard addition quantity is the quantity of curing agent added to 100 parts compound.
2. Linear shrinkage values differ according to the curing agent used.
3. Test pieces: 120°C x 10 min (press cure), 200°C x 4 h (post cure)
4. Measured values at 100°C x 22 h
5. Measured values at 150°C x 22 h
6. X-93-1609 is a flame retardant.
7. **Not available in U.S.**

[Unit conversion] tensile strength: 10 kgf/cm² = 0.98 MPa; tear strength: 1 kgf/cm = 0.98 kN/m; volume resistivity: 10¹⁴ Ω·cm = 1 TΩ·cm.
Silicone rubber: general properties

<table>
<thead>
<tr>
<th>Classification</th>
<th>Heat resistance</th>
<th>Hermetic heat resistance</th>
<th>Steam resistance</th>
<th>Electrically conductive</th>
<th>Heat conductive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade</td>
<td>KE-552-U<sup>♣</sup></td>
<td>KE-582-U<sup>♣</sup></td>
<td>KE-552B-U<sup>APS</sup></td>
<td>KE-7711-U</td>
<td>KE-7611-U</td>
</tr>
<tr>
<td>Appearance</td>
<td>Light brown</td>
<td>Pale yellow</td>
<td>Pale yellow</td>
<td>Black</td>
<td>Dark blue</td>
</tr>
<tr>
<td>Density 23°C g/cm³</td>
<td>1.16 1.25 1.17 1.14 1.15</td>
<td>1.12 1.21 1.20 1.14</td>
<td>1.17 1.14</td>
<td>1.20 1.90</td>
<td></td>
</tr>
<tr>
<td>Wilkman plasticity (10 min after remix)</td>
<td>270 470</td>
<td>280 220 220 230</td>
<td>450 480</td>
<td>630 500</td>
<td></td>
</tr>
<tr>
<td>Curing agent</td>
<td>Curing agent name</td>
<td>Standard addition quantity<sup>♣</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensile strength MPa</td>
<td>10.0 7.0</td>
<td>9.8 9.5</td>
<td>9.1 8.8</td>
<td>7.0 6.5 5.3</td>
<td></td>
</tr>
<tr>
<td>Elongation at break %</td>
<td>5.0 250 550</td>
<td>410 330 300</td>
<td>290 170 190</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>Hardness Durometer A</td>
<td>52 80</td>
<td>52 55</td>
<td>61 72</td>
<td>62 66 73 85</td>
<td></td>
</tr>
<tr>
<td>Volume resistivity Normal state</td>
<td>9.0 99 90</td>
<td>500</td>
<td>— — —</td>
<td>0.05<sup>♣</sup></td>
<td></td>
</tr>
<tr>
<td>Test pieces: 120°C x 10 min (press cure), 200°C x 4 h (post cure)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks
- Measurement: in accordance with JIS K 6249
- Test pieces: 165°C x 10 min (press cure), 200°C x 4 h (post cure)

[♣] Standard addition quantity is the quantity of curing agent added to 100 parts compound.

^{APS} Linear shrinkage values differ according to the curing agent used.

¹ Test pieces: 120°C x 10 min (press cure), 200°C x 4 h (post cure)

² Test pieces: 120°C x 10 min (press cure), 150°C x 1 h + 250°C x 24 h (post cure)

³ Test pieces: 120°C x 10 min (press cure), 150°C x 1 h (post cure)

⁴ Measured values at 150°C x 22 h

⁵ Measured values at 100°C x 22 h

⁶ Measured values at 150°C x 70 h

⁷ Measured values at 105°C x 70 h

[Unit conversion] tensile strength: 10 kgf/cm² = 0.98 MPa; tear strength: 1 kgf/cm = 0.98 kN/m; volume resistivity: 10¹⁴ Ω·cm = 1 TΩ·m.
Silicone rubber: other properties

<table>
<thead>
<tr>
<th>Classification</th>
<th>For general extrusion molding</th>
<th>Voltage resistance</th>
<th>Oil bleed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat resistance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rate of change (RC) at 220°C x 96 h</td>
<td>Hardness Point</td>
<td>-4</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td>Tensile strength %</td>
<td>-20</td>
<td>-10</td>
</tr>
<tr>
<td></td>
<td>Elongation at break %</td>
<td>-8</td>
<td>-22</td>
</tr>
<tr>
<td>Oil resistance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RC at 150°C x 72 h IRM 903 Oil</td>
<td>Hardness Point</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Tensile strength %</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Elongation at break %</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Volume change %</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Flame retardance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UL94</td>
<td>HB</td>
<td>HB</td>
<td>HB</td>
</tr>
<tr>
<td>Low temperature characteristics</td>
<td>T10 Gehman test °C</td>
<td>—</td>
<td>-46</td>
</tr>
</tbody>
</table>

(Not specified values)

<table>
<thead>
<tr>
<th>Classification</th>
<th>For general purpose</th>
<th>Voltage resistance</th>
<th>Oil bleed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade</td>
<td>KE-551-U<sup>2</sup></td>
<td>KE-561-U<sup>2</sup></td>
<td>KE-571-U<sup>2</sup></td>
</tr>
<tr>
<td>Heat resistance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RC at 220°C x 96 h</td>
<td>Hardness Point</td>
<td>+4</td>
<td>+6</td>
</tr>
<tr>
<td></td>
<td>Tensile strength %</td>
<td>-19</td>
<td>-27</td>
</tr>
<tr>
<td></td>
<td>Elongation at break %</td>
<td>-40</td>
<td>-41</td>
</tr>
<tr>
<td>Oil resistance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RC at 150°C x 72 h IRM 903 Oil</td>
<td>Hardness Point</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Tensile strength %</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Elongation at break %</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Volume change %</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

(Not specified values)

<table>
<thead>
<tr>
<th>Classification</th>
<th>Flame retardance</th>
<th>Heat resistance</th>
<th>Hermetic heat resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade</td>
<td>KE-5520W-U</td>
<td>KE-5620BL-U</td>
<td>KE-5634-U</td>
</tr>
<tr>
<td>Heat resistance</td>
<td></td>
<td>KE-552-U<sup>4</sup></td>
<td>KE-582-U<sup>4</sup></td>
</tr>
<tr>
<td>RC at 220°C x 96 h</td>
<td>Hardness Point</td>
<td>+4</td>
<td>+3</td>
</tr>
<tr>
<td></td>
<td>Tensile strength %</td>
<td>+10</td>
<td>+13</td>
</tr>
<tr>
<td></td>
<td>Elongation at break %</td>
<td>+28</td>
<td>+28</td>
</tr>
<tr>
<td>Flame retardance</td>
<td>UL94</td>
<td>V-0</td>
<td>V-0</td>
</tr>
</tbody>
</table>

Measurement: in accordance with JIS K 6249. Test pieces: 165°C x 10 min (press cure), 200°C x 4 h (post cure)

<table>
<thead>
<tr>
<th>Classification</th>
<th>Steam resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade</td>
<td>KE-7511-U</td>
</tr>
<tr>
<td>Heat resistance</td>
<td>KE at 220°C x 96 h</td>
</tr>
<tr>
<td>Hardness Point</td>
<td>+2<sup>61</sup></td>
</tr>
<tr>
<td>Tensile strength %</td>
<td>-15</td>
</tr>
<tr>
<td>Elongation at break %</td>
<td>-10</td>
</tr>
</tbody>
</table>

Measurement: in accordance with JIS K 6249. Test pieces: 165°C x 10 min (press cure), 200°C x 4 h (post cure)

¹ Measured values at 230°C x 72 h
² Relevant data id for addition cure (C-25A/B=0.5/2.0)
³ Measured values at 200°C x 72 h
⁴ Test pieces: 120°C x 10 min (press cure), 200°C x 4 h (post cure)
⁵ Measured values at 300°C x 72 h
2. Fluorosilicone rubber

Fluorosilicone rubber is highly resistant to high and low temperatures and solvents, and has excellent workability. In IRM 903, a standard oil, there is less than 5% swelling (150°C x 70 h). Fluorosilicone rubber also has excellent resistance to silicone fluid. Shin-Etsu’s fluorosilicone rubber products include the FE-201-U Series for general molding (hardness: 25-80), and the FE-301-U Series of high strength rubbers (hardness: 40-80). We also produce FE-451-U, a copolymer type that exhibits oil resistance midway between that of dimethyl silicone rubber and fluorosilicone rubber. This copolymer material has oil resistance while also having superior cold resistance, and maintains a greater degree of rubber elasticity at low temperatures than typical silicone rubbers.

Applications: Rubber parts including diaphragms, check valves, and connectors, specifically in applications requiring oil and solvent resistance.

General properties

<table>
<thead>
<tr>
<th>Grade</th>
<th>FE-251-U</th>
<th>FE-261-U</th>
<th>FE-271-U</th>
<th>FE-351-U</th>
<th>FE-361-U</th>
<th>FE-451-U(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>Pale yellow</td>
<td>Pale yellow</td>
<td>Grayish white</td>
<td>Pale yellow</td>
<td>Pale yellow</td>
<td>Pale yellow</td>
</tr>
<tr>
<td>Density 23°C g/cm³</td>
<td>1.41</td>
<td>1.42</td>
<td>1.50</td>
<td>1.44</td>
<td>1.46</td>
<td>1.23</td>
</tr>
<tr>
<td>Curing agent name</td>
<td>C-8A</td>
<td>C-8A</td>
<td>C-8A</td>
<td>C-8A</td>
<td>C-8A</td>
<td>C-8A</td>
</tr>
<tr>
<td>Standard addition quantity</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Hardness Durometer A</td>
<td>54</td>
<td>63</td>
<td>73</td>
<td>49</td>
<td>62</td>
<td>50</td>
</tr>
<tr>
<td>Elongation at break %</td>
<td>430</td>
<td>400</td>
<td>300</td>
<td>520</td>
<td>520</td>
<td>300</td>
</tr>
<tr>
<td>Tensile strength MPa</td>
<td>9.8</td>
<td>9.8</td>
<td>9.0</td>
<td>13.3</td>
<td>12.7</td>
<td>6.4</td>
</tr>
<tr>
<td>100% modulus MPa</td>
<td>1.9</td>
<td>2.7</td>
<td>5.3</td>
<td>0.98</td>
<td>1.2</td>
<td>1.8</td>
</tr>
<tr>
<td>200% modulus MPa</td>
<td>4.4</td>
<td>5.8</td>
<td>6.6</td>
<td>2.5</td>
<td>2.7</td>
<td>3.7</td>
</tr>
<tr>
<td>Tear strength Crescent kN/m</td>
<td>15</td>
<td>16</td>
<td>16</td>
<td>38</td>
<td>45</td>
<td>10</td>
</tr>
<tr>
<td>Linear shrinkage %</td>
<td>3.5</td>
<td>3.5</td>
<td>3.3</td>
<td>3.3</td>
<td>3.2</td>
<td>3.8</td>
</tr>
<tr>
<td>Rebound resiliency %</td>
<td>43</td>
<td>43</td>
<td>34</td>
<td>24</td>
<td>21</td>
<td>74</td>
</tr>
<tr>
<td>Compression set %</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>17</td>
<td>14</td>
<td>6</td>
</tr>
<tr>
<td>Heat resistance 200°C x 72 h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardness change Point</td>
<td>+2</td>
<td>+3</td>
<td>+3</td>
<td>+5</td>
<td>+5</td>
<td>+2</td>
</tr>
<tr>
<td>Elongation change %</td>
<td>-7</td>
<td>-5</td>
<td>-16</td>
<td>±0</td>
<td>-2</td>
<td>-7</td>
</tr>
<tr>
<td>Tensile strength change %</td>
<td>-16</td>
<td>-12</td>
<td>-17</td>
<td>-7</td>
<td>-8</td>
<td>-7</td>
</tr>
<tr>
<td>Hardness change 25°C x 72 h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardness change Point</td>
<td>-9</td>
<td>-9</td>
<td>-10</td>
<td>-12</td>
<td>-15</td>
<td>—</td>
</tr>
<tr>
<td>Elongation change %</td>
<td>-44</td>
<td>-45</td>
<td>-23</td>
<td>-33</td>
<td>-14</td>
<td>—</td>
</tr>
<tr>
<td>Tensile strength change %</td>
<td>-48</td>
<td>-40</td>
<td>-17</td>
<td>-46</td>
<td>-27</td>
<td>—</td>
</tr>
<tr>
<td>Volume change %</td>
<td>+24</td>
<td>+23</td>
<td>+21</td>
<td>+23</td>
<td>+22</td>
<td>+140</td>
</tr>
</tbody>
</table>

Remarks: For fuel diaphragms and check valves High tear strength Copolymer

Measurement: based on JIS K 6249 Test pieces: 165°C x 10 min (press cure), 200°C x 4 h (post cure)

(Not specified values)

(1) Measured values at 180°C x 22 h (2) FE-451-U is produced in response to orders received.
SEP rubber is produced by modifying ethylene propylene rubber (EPDM) with silicone. This improves EPDM’s properties of heat resistance and weather resistance, and low temperature characteristics. These performance characteristics lie between those of EPDM and silicone rubber, but SEP rubber has the additional favorable properties of chlorine resistance and sponge foaming characteristics. In high temperature conditions over 100°C, SEP rubber has higher mechanical strength, in particular tear strength, than EPDM, and is comparable to high-strength silicone rubber. In terms of resistance to steam, hot water, acids and alkalis, SEP rubber is more durable than silicone rubbers. SEP rubbers are available in several grades: general grade (SEP-1411-U/SEP-1711-U), heat-resistant grade (SEP-1421-U/SEP-1721-U), extrusion grade (SEP-1731-U) and flame-resistant grade (SEP-363-U).

Applications: Rubber parts for high-temperature applications requiring high strength, including plug boots.

General properties

<table>
<thead>
<tr>
<th>Grade</th>
<th>SEP-1411-U</th>
<th>SEP-1711-U</th>
<th>SEP-1421-U</th>
<th>SEP-1721-U</th>
<th>SEP-1731-U</th>
<th>SEP-363-U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>Pale yellow</td>
<td>Yellow</td>
<td>Pale yellow</td>
<td>Pale yellow</td>
<td>Gray</td>
<td>Black</td>
</tr>
<tr>
<td>Density 23°C</td>
<td>0.99</td>
<td>1.11</td>
<td>1.01</td>
<td>1.15</td>
<td>1.21</td>
<td>1.40</td>
</tr>
<tr>
<td>Curing agent name</td>
<td>C-12/SEP-BM</td>
<td>C-12</td>
<td>C-12</td>
<td>C-12/SEP-BM</td>
<td>C-12</td>
<td>C-12</td>
</tr>
<tr>
<td>Standard addition quantity</td>
<td>2.0/0.1</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>4.0/0.2</td>
<td>1.5</td>
</tr>
<tr>
<td>Mooney viscosity ML 1+4 100°C</td>
<td>36</td>
<td>75</td>
<td>17</td>
<td>66</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Hardness Durometer A</td>
<td>47</td>
<td>70</td>
<td>41</td>
<td>72</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Elongation at break %</td>
<td>820</td>
<td>600</td>
<td>930</td>
<td>550</td>
<td>600</td>
<td>400</td>
</tr>
<tr>
<td>Tensile strength MPa</td>
<td>7.8</td>
<td>17.0</td>
<td>6.2</td>
<td>11.0</td>
<td>14.0</td>
<td>4.8</td>
</tr>
<tr>
<td>Tear strength Crescent kN/m</td>
<td>12</td>
<td>35</td>
<td>12</td>
<td>30</td>
<td>30</td>
<td>25</td>
</tr>
<tr>
<td>Rebound resiliency %</td>
<td>62</td>
<td>50</td>
<td>62</td>
<td>50</td>
<td>51</td>
<td>50</td>
</tr>
<tr>
<td>Compression set %</td>
<td>40</td>
<td>40</td>
<td>50</td>
<td>45</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>Linear shrinkage %</td>
<td>—</td>
<td>2.5</td>
<td>—</td>
<td>2.7</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Flame retardance</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1.6 mm UL94 V-0</td>
</tr>
<tr>
<td>Remarks</td>
<td>For general molding Sulfur cure possible</td>
<td>For general molding Sulfur cure possible</td>
<td>For general molding Heat-resistant grade</td>
<td>For general molding Heat-resistant grade</td>
<td>For extrusion General grade</td>
<td>Flame retardance Halogen-free</td>
</tr>
</tbody>
</table>

Measurement: based on JIS K 6249 Test pieces: 170°C x 10 min (press cure), 150°C x 2 h (post cure)

* Measured values at 150°C x 22 h

● We also offer a range of trial products in grades other than those listed above.
4. Curing agents

Shin-Etsu’s silicone rubbers typically do not include a curing agent. These are called “U-types,” and expressed such as KE-951-U. With U-type products, choose a suitable curing agent (from C-1A to C-25A/B) in accordance with the curing method. We also offer curing agents other than those listed here. Please contact Shin-Etsu for details.

Types

<table>
<thead>
<tr>
<th>Curing Method</th>
<th>Grade</th>
<th>Applications</th>
<th>Appearance</th>
<th>Main Vulcanizing Ingredient</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-1A</td>
<td>General molding, thin sections</td>
<td>White paste</td>
<td>Benzoyl peroxide</td>
<td>Approx. 50% content</td>
</tr>
<tr>
<td>C-3</td>
<td>General molding, steam curing, flame retardance</td>
<td>White putty</td>
<td>Dicumyl peroxide</td>
<td>Approx. 20% content</td>
</tr>
<tr>
<td>C-4</td>
<td>General molding</td>
<td>Grayish white paste</td>
<td>Ditertiarybutyl peroxide</td>
<td>Approx. 20% content</td>
</tr>
<tr>
<td>C-6/C-8A/C-8B</td>
<td>General molding, thick sections</td>
<td>Grayish white paste(C-6), Translucent paste(C-8A, C-8B)</td>
<td>2.5 dimethyl-2.5 bis (tertiarybutylperoxy) hexane</td>
<td>Approx. 25% content(C-6), approx. 80% content(C-8A), approx. 40% content(C-8B)</td>
</tr>
<tr>
<td>C-12</td>
<td>SEP General molding, SEP Steam curing</td>
<td>White powder</td>
<td>Dicumyl peroxide</td>
<td>Approx. 40% content</td>
</tr>
<tr>
<td>C-15</td>
<td>General molding, for transparent products</td>
<td>Translucent paste</td>
<td>2.5 dimethyl-2.5 bis (tertiarybutylperoxy) hexane</td>
<td>Approx. 12.5% content</td>
</tr>
<tr>
<td>C-23N</td>
<td>Hot Air Vulcanization (HAV)</td>
<td>White paste</td>
<td>Paramethylbenzoilperoxide</td>
<td>Approx. 50% content</td>
</tr>
<tr>
<td>C-25A/B</td>
<td>Vulcanization of addition-cure rubbers</td>
<td>Transparent paste(C-25A), Translucent paste(C-25B)</td>
<td>Contains metal complex(C-25A), Contains cross-linker(C-25B)</td>
<td></td>
</tr>
</tbody>
</table>

Suitability by application

<table>
<thead>
<tr>
<th>Grade</th>
<th>Applications</th>
<th>Curing method</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Thin sections</td>
<td>Thick sections</td>
</tr>
<tr>
<td>C-1A</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>C-3</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>C-4</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>C-8</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>C-8A</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>C-8B</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>C-15</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>C-23N</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>C-25A/B</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>

* Use sponge curing agents as a combination of C-1A with C-3, or C-23N with C-3.
Standard addition quantity

<table>
<thead>
<tr>
<th>Grade</th>
<th>C-1A</th>
<th>C-3</th>
<th>C-4*1</th>
<th>C-8*2</th>
<th>C-8A</th>
<th>C-8B</th>
<th>C-15</th>
<th>C-23N</th>
</tr>
</thead>
<tbody>
<tr>
<td>KE-931-U</td>
<td>0.75</td>
<td>3.2</td>
<td>4.0</td>
<td></td>
<td>1.0</td>
<td>—</td>
<td>1.8*</td>
<td></td>
</tr>
<tr>
<td>KE-941-U</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
<td>—</td>
<td>1.8*</td>
<td></td>
</tr>
<tr>
<td>KE-951-U</td>
<td>0.65</td>
<td>3.0</td>
<td></td>
<td></td>
<td>1.0</td>
<td>—</td>
<td>1.5*</td>
<td></td>
</tr>
<tr>
<td>KE-961-U</td>
<td>0.6</td>
<td>2.3</td>
<td>3.5</td>
<td></td>
<td>1.0</td>
<td>—</td>
<td>1.4*</td>
<td></td>
</tr>
<tr>
<td>KE-971-U</td>
<td>0.55</td>
<td>1.9</td>
<td>3.0</td>
<td>2.0</td>
<td>1.0</td>
<td>—</td>
<td>1.3*</td>
<td></td>
</tr>
<tr>
<td>KE-981-U</td>
<td>0.5</td>
<td>1.6</td>
<td></td>
<td></td>
<td>1.0</td>
<td>—</td>
<td>1.2*</td>
<td></td>
</tr>
<tr>
<td>KE-961T-U</td>
<td>0.65</td>
<td>2.5</td>
<td>4.0</td>
<td>2.0</td>
<td>1.0</td>
<td>—</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>KE-971T-U</td>
<td>0.6</td>
<td>2.3</td>
<td>3.5</td>
<td></td>
<td>1.0</td>
<td>—</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>KE-871C-U</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
<td>0.3</td>
<td>0.5</td>
<td>—</td>
</tr>
<tr>
<td>KE-9511-U</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
<td>0.5</td>
<td>1.0</td>
<td>—</td>
</tr>
<tr>
<td>KE-5151-U</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
<td>1.0</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>KE-5550-U</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
<td>0.5</td>
<td>1.0</td>
<td>—</td>
</tr>
<tr>
<td>KE-501EM-U</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td>1.5</td>
</tr>
<tr>
<td>KE-7211-U</td>
<td></td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KE-7212-U</td>
<td></td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KE-7213-U</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
<td>1.0</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>X-30-3893-U</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
<td>1.0</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>KE-9590-U</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
<td>0.5</td>
<td>1.0</td>
<td>—</td>
</tr>
<tr>
<td>KE-541-U</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KE-551-U</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KE-561-U</td>
<td>0.7</td>
<td>3.0</td>
<td>4.0</td>
<td>2.0</td>
<td>0.6</td>
<td>1.0</td>
<td>—</td>
<td>1.0</td>
</tr>
<tr>
<td>KE-571-U</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.3</td>
</tr>
<tr>
<td>KE-581-U</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KE-153-U</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KE-174-U</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KE-1551-U</td>
<td>0.8</td>
<td>3.2</td>
<td>4.0</td>
<td>2.0</td>
<td>0.5</td>
<td>1.0</td>
<td>—</td>
<td>0.8</td>
</tr>
<tr>
<td>KE-1571-U</td>
<td>0.7</td>
<td>2.0</td>
<td>3.0</td>
<td>2.0</td>
<td>0.4</td>
<td>1.0</td>
<td>—</td>
<td>0.7</td>
</tr>
<tr>
<td>KE-555-U*2</td>
<td>0.8</td>
<td>2.5</td>
<td></td>
<td>2.0</td>
<td>0.5</td>
<td>1.0</td>
<td>—</td>
<td>1.3</td>
</tr>
<tr>
<td>KE-575-U</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Note: Please contact Shin-Etsu separately for information regarding Hot Air Vulcanization (HAV).

1 C-4 is volatile, so the silicone rubber should be used soon after mixing.
2 C-8 has qualities nearly identical to C-4, but has the advantage of lower volatility than C-4.
3 Not available in U.S.
5. Standard conditions for compression molding

<table>
<thead>
<tr>
<th>Grade</th>
<th>Thickness of molded item (mm)</th>
<th>Less than 1</th>
<th>1 - 5</th>
<th>5 - 10</th>
<th>10 - 25</th>
<th>25 - 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-1AN, C-23N</td>
<td>Temperature °C</td>
<td>120 - 125</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time min</td>
<td>10</td>
<td>10 - 15</td>
<td>15 - 30</td>
<td>30 - 60</td>
<td>60 - 120</td>
</tr>
<tr>
<td></td>
<td>Pressure MPa</td>
<td>2.9 - 4.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-3</td>
<td>Temperature °C</td>
<td>155 - 160</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time min</td>
<td>10</td>
<td>10 - 15</td>
<td>15 - 30</td>
<td>30 - 60</td>
<td>60 - 120</td>
</tr>
<tr>
<td></td>
<td>Pressure MPa</td>
<td>2.9 - 4.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-4, C-15, C-8, C-8A</td>
<td>Temperature °C</td>
<td>165 - 170</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time min</td>
<td>10</td>
<td>10 - 15</td>
<td>15 - 30</td>
<td>30 - 60</td>
<td>60 - 120</td>
</tr>
<tr>
<td></td>
<td>Pressure MPa</td>
<td>2.9 - 5.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-25A/B 2</td>
<td>Temperature °C</td>
<td>150 - 170</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time min</td>
<td>10 - 20</td>
<td>20 - 60</td>
<td>60 - 120</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pressure MPa</td>
<td>2.9 - 5.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Curing may be uneven in molded items thicker than 5 mm. Shin-Etsu recommends C-3, C-8, or C-8A for molding items over 5 mm thick.
2 Molding possible at temperatures as low as 120°C-150°C.

6. Primers

By applying the primer in advance, better adhesion will be obtained.

<table>
<thead>
<tr>
<th>Grade</th>
<th>Appearance</th>
<th>Ingredient (%)</th>
<th>Solvent</th>
<th>Drying conditions</th>
<th>Adherend</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRIMER-NO.4</td>
<td>Colorless, transparent</td>
<td>20</td>
<td>n-Heptane</td>
<td>23°C / 15 - 20 min</td>
<td>Metal, Plastic</td>
</tr>
<tr>
<td>PRIMER-NO.33</td>
<td>Reddish brown</td>
<td>20</td>
<td>Toluene/IPA</td>
<td>23°C x 30 min → 150°C x 15 min</td>
<td>Metal</td>
</tr>
<tr>
<td>PRIMER-NO.34T</td>
<td>Colorless, transparent</td>
<td>20</td>
<td>Toluene/IPA</td>
<td>23°C x 30 min → 150°C x 15 min</td>
<td>Metal</td>
</tr>
</tbody>
</table>

We offer other primers in addition to those listed above. Contact our Sales Department for details.

7. Coloring agents

<table>
<thead>
<tr>
<th>Grade</th>
<th>Color</th>
<th>Coloring ingredient (%) (ingredient name)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KE-Color BR</td>
<td>Reddish brown</td>
<td>50 (iron oxide)</td>
</tr>
<tr>
<td>KE-Color W</td>
<td>White</td>
<td>50 (titanium oxide)</td>
</tr>
<tr>
<td>KE-Color MB</td>
<td>Blue</td>
<td>50 (lapis)</td>
</tr>
<tr>
<td>KE-Color BL</td>
<td>Black</td>
<td>50 (iron oxide, carbon)</td>
</tr>
<tr>
<td>KE-Color SB</td>
<td>Sky blue</td>
<td>50 (cobalt blue)</td>
</tr>
<tr>
<td>X-93-941</td>
<td>Yellow</td>
<td>50 (titanium oxide, organic pigment)</td>
</tr>
<tr>
<td>X-93-942</td>
<td>Red</td>
<td>50 (organic pigment)</td>
</tr>
</tbody>
</table>
8. Application examples by industry

<table>
<thead>
<tr>
<th>Industry</th>
<th>Application examples</th>
<th>Desired properties</th>
<th>Typical grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home appliances</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LED lamp holder</td>
<td>electrical insulation, heat resistance, flame retardance</td>
<td>KE-5620W-U</td>
<td></td>
</tr>
<tr>
<td>defrosters</td>
<td>heat resistance, cold resistance, electrical insulation</td>
<td>KE-552B-U/KE-138Y-U/KE-582-U</td>
<td></td>
</tr>
<tr>
<td>gaskets for refrigerators</td>
<td>cold resistance</td>
<td>KE-186-U</td>
<td></td>
</tr>
<tr>
<td>hot airbrushes</td>
<td>heat resistance, weather resistance, color tone</td>
<td>KE-941-U/KE-951-U</td>
<td></td>
</tr>
<tr>
<td>microwave oven window gaskets</td>
<td>heat resistance, low compression set</td>
<td>KE-552-U/KE-582-U</td>
<td></td>
</tr>
<tr>
<td>Electric power</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lead wires of motors and electric appliances heater wires of rice cookers</td>
<td>electrical insulation, heat resistance, cold resistance, thermal conductivity, extrusion workability, flame retardance, high pressure-resistance</td>
<td>KE-552B-U<sup>†</sup></td>
<td></td>
</tr>
<tr>
<td>connectors</td>
<td>dielectric strength</td>
<td>KE-7211-U/X-38-3893-U</td>
<td></td>
</tr>
<tr>
<td>Office equipment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>keypads of mobile communications devices, etc.</td>
<td>electrical conductivity (some)<sup>†</sup>, electrical insulation, flex fatigue resistance, low temperature-dependence</td>
<td>KE-951-U/KE-3711-U</td>
<td></td>
</tr>
<tr>
<td>EMI gaskets</td>
<td>electrical conductivity, flame retardance, thermal conductivity</td>
<td>KE-3801M-U/KE-3711-U</td>
<td></td>
</tr>
<tr>
<td>Machinery</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>solar hoses</td>
<td>chlorine water resistance, weather resistance</td>
<td>KE-7511-U/KE-7611-U</td>
<td></td>
</tr>
<tr>
<td>hot stamp rollers</td>
<td>heat resistance, low compression set</td>
<td>KE-765-U/KE-785-U</td>
<td></td>
</tr>
<tr>
<td>vibration-damping rubbers</td>
<td>low rebound resilience</td>
<td>KE-5550-U/KE-501EM-U</td>
<td></td>
</tr>
<tr>
<td>Automotive</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>keypads</td>
<td>click property, fatigue durability</td>
<td>KE-9511-U/KE-5151-U</td>
<td></td>
</tr>
<tr>
<td>diaphragms, o-rings</td>
<td>oil resistance, heat resistance, cold resistance, flex fatigue resistance</td>
<td>FE-251-U/FE-271-U</td>
<td></td>
</tr>
<tr>
<td>plug boots</td>
<td>oil resistance, heat resistance</td>
<td>KE-871C-U</td>
<td></td>
</tr>
<tr>
<td>waterproof connectors</td>
<td>heat resistance, oil bleed, oil resistance</td>
<td>KE-653-U/KE-505-U</td>
<td></td>
</tr>
<tr>
<td>radiator hoses</td>
<td>heat resistance, cold resistance, low compression set, hot water resistance</td>
<td>SEP-1731-U</td>
<td></td>
</tr>
<tr>
<td>turbocharger hoses</td>
<td>heat resistance, oil resistance, flex fatigue resistance</td>
<td>KE-552B-U/KE-655-U</td>
<td></td>
</tr>
<tr>
<td>intercooler hoses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pressure cooker gaskets</td>
<td>fire resistant gaskets</td>
<td>KE-1734-U</td>
<td></td>
</tr>
<tr>
<td>rice cooker and electric kettle gaskets</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>electronic rice cooker gaskets</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Food</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pressure cooker gaskets</td>
<td>steam resistance, safety, chlorine water resistance low compression set</td>
<td>KE-971-U/KE-7511-U/KE-961-U</td>
<td></td>
</tr>
<tr>
<td>rice cooker and electric kettle gaskets</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>electronic rice cooker gaskets</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>milkers</td>
<td>transparency, tear strength, safety, high strength</td>
<td>KE-153-U<sup>‡</sup></td>
<td></td>
</tr>
<tr>
<td>baby nipples</td>
<td>transparency, safety</td>
<td>KE-920-U</td>
<td></td>
</tr>
<tr>
<td>lunch box gaskets</td>
<td>safety, low compression set</td>
<td>KE-951-U/KE-971-U</td>
<td></td>
</tr>
<tr>
<td>cake mold, kitchenware</td>
<td>safety, coloring</td>
<td>KE-153-U<sup>‡</sup></td>
<td></td>
</tr>
<tr>
<td>swimming goggles, snorkel mouthpieces, goggle bands</td>
<td>transparency, high strength, high-class, safety, pleasant texture against the skin</td>
<td>KE-153-U</td>
<td></td>
</tr>
</tbody>
</table>

[†] Electrically conductive products such as KE-3711-U

[‡] For information about these products, please contact one of the Sales Departments listed on the back cover.
Silicone Division Sales and Marketing Department
Marunouchi Eiraku Bldg., 4-1, Marunouchi 1-chome, Chiyoda-ku, Tokyo 100-0005, Japan
Phone : +81-(0)3-6812-2408 Fax : +81-(0)3-6812-2415

Shin-Etsu Silicates of America, Inc.
1150 Damar Drive, Akron, OH 44305, U.S.A.
Phone : +1-330-630-9860 Fax : +1-330-630-9855

Shin-Etsu do Brasil Representação de Produtos Químicos Ltda.
Rua Coronel Oscar Porto, 736 - 8º Andar - Sala 84,
Paraíso São Paulo - SP Brasil CEP: 04003-003
Phone : +55-11-3939-0690 Fax : +55-11-3052-3904

Shin-Etsu Silicons Europe B.V.
Bolderweg 32, 1332 AV, Almere, The Netherlands
Phone : +31-(0)36-5493170 Fax : +31-(0)36-5326459

Germany Branch
Kasteler Str. 45, 65203 Wiesbaden, Germany
Phone : +49-(0)611-7187290

Shin-Etsu Silicons Korea Co., Ltd.
GT Tower 15F, 411, Seoco-daero, Seoco-gu,
Seoul 06615, Korea
Phone : +82-(0)2-590-2500 Fax : +82-(0)2-590-2501

Shin-Etsu Silicons International Trading (Shanghai) Co., Ltd.
29F Junyao International Plaza, No.789,
Zhao Jia Bang Road, Shanghai 200032, China
Phone : +86-(0)21-6443-5550 Fax : +86-(0)21-6443-5868

Guangzhou Branch
Room 2409-2410, Tower B, China Shine Plaza, 9 Linhexi Road,
 Tianhe, Guangzhou, Guangdong 510610, China
Phone : +86-10-3831-0212 Fax : +86-10-3831-0207

- The data and information presented in this catalog may not be relied upon to represent standard values. Shin-Etsu reserves the right to change such data and information, in whole or in part, in this catalog, including product performance standards and specifications without notice.

- Users are solely responsible for making preliminary tests to determine the suitability of products for their intended use. Statements concerning possible or suggested uses made herein may not be relied upon, or be construed, as a guaranty of no patent infringement.

- For detailed information regarding safety, please refer to the Safety Data Sheet (SDS).

- The silicone products described herein have been designed, manufactured and developed solely for general industrial use only; such silicone products are not designed for, intended for use as, or suitable for, medical, surgical or other particular purposes. Users have the sole responsibility and obligation to determine the suitability of the silicone products described herein for any application, to make preliminary tests, and to confirm the safety of such products for their use.

- Users must never use the silicone products described herein for the purpose of implantation into the human body and/or injection into humans.

- Users are solely responsible for exporting or importing the silicone products described herein, and complying with all applicable laws, regulations, and rules relating to the use of such products. Shin-Etsu recommends checking each pertinent country’s laws, regulations, and rules in advance, when exporting or importing, and before using the products.

- Please contact Shin-Etsu before reproducing any part of this catalog. Copyright belongs to Shin-Etsu Chemical Co., Ltd.

“The data and information presented in this catalog may not be relied upon to represent standard values. Shin-Etsu reserves the right to change such data and information, in whole or in part, in this catalog, including product performance standards and specifications without notice.”

https://www.shinetsusilicone-global.com/