

# **Silicone Thermal Interface Materials**



# What are Silicone Thermal Interface Materials?

Silicone thermal interface materials are compound materials which contain a high ratio of thermally conductive fillers. They exhibit outstanding thermal conductivity because they fit snugly in the gap between the heating element and the heatsink. Shin-Etsu Silicone offers an optimal heat dissipation solution tailored to the required usage and performance from a wide range of product lineups.

■ Model of Improved Thermal Conductivity



# Thermal conductivity

Silicone thermal interface materials: approx. 0.8 to 9.5 W/m·K

Air: approx. 0.03 W/m·K

# **Product Lineup**

#### **Sheet Products**

#### **P4** Thermal Interface Insulating Silicone Rubber Sheets Main Products: TC-TA Series ■Features Easy to use, excellent stability There are a variety of shapes, such as sheets, caps, tubes, etc Excellent electric insulation ■Structure ■Schematic diagram ●TC-TA-1 Silicone rubbe ●TC-TAG-2/TC-TAG-3/TC-TAG-6/TC-TAG-1

# **Liquid and Grease Products**



# Thermal Interface Silicone Soft Pads



# Condensation Cure Type Liquid Silicone Rubbers



#### ·Cure by reaction with moisture under room temperature •Bonding and fixing of electronic components are possible.



# Double Sided Thermal Interface Silicone Tapes



# Addition Cure Type Liquid Silicone Rubbers Adhesives/ Potting Materials



# Condensation Cure Type Thermal Interface Oil Compound G-1000 Thermal Interface Gap Filler SDP Series & Pre-cured Gel Series



#### ■Features

- ·Thick application is possible.
- Optimal for the application of uneven adherends
- ·Balancing resistance to misalignment and



# Thermal Softening Sheets Phase Change Materials



# Product Selection Flow chart





# Thermal Interface Insulating Silicone Rubber Sheets

# **Suitable Applications**

- Substitute for insulating paper
- •Thermal dissipation in areas where insulation is to be ensured only by sandwiching a thin sheet

# Unsuitable Applications

 Heat dissipation of heat sources with large irregularities



# **Features**

- ·With thermal conductivity, heat dissipation from heating elements
- •Insulation can be guaranteed by ensuring creepage distance.
- ·Excellent workability, stability, and electrical insulation
- •There are a variety of shapes, such as sheets, caps and tubes, etc.



# Structure



Thin sheet that ensures insulation







Transistor heat dissipation





Compatible with the shape of tubes and caps as required

# **General Properties**

| Parameter                                                                  | Series                     | TC-TA-1 series                    | TC-TAG-2 series                    | TC-TAP-2 series                    | TC-TAG-3 series                    | TC-TAG-6 series                    | TC-TAG-8 series                    | TC-BG series                    |
|----------------------------------------------------------------------------|----------------------------|-----------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|---------------------------------|
| Color                                                                      |                            | Black brown                       | Purple                             | Light purple                       | Dark Gray                          | Pink                               | Light gray                         | White                           |
| Reinforcement layer                                                        |                            | None                              | Glass cloth                        | Polyimide film                     | Glass cloth                        | Glass cloth                        | Glass cloth                        | Glass cloth                     |
| Standard size                                                              | mm                         | 300×1,000                         | 300×1,000<br>Roll                  | 320×1,000<br>Roll                  | 300×1,000<br>Roll                  | 420×500                            | 420×500                            | 210×270                         |
| Thickness                                                                  | mm                         | 0.20、0.30、0.45                    | 0.20、0.30、0.45、0.80                | 0.11                               | 0.20、0.30、0.45                     | 0.20、0.30、0.45                     | 0.20、0.30、0.45                     | 0.20、0.30、0.45                  |
| Representative product properties                                          | Test method                | TC-30TA-1<br>(Thickness: 0.30 mm) | TC-30TAG-2<br>(Thickness: 0.30 mm) | TC-11TAP-2<br>(Thickness: 0.11 mm) | TC-30TAG-3<br>(Thickness: 0.30 mm) | TC-30TAG-6<br>(Thickness: 0.30 mm) | TC-30TAG-8<br>(Thickness: 0.30 mm) | TC-30BG<br>(Thickness: 0.30 mm) |
| Thermal conductivity of rubber W/m·K                                       | ISO 22007-2*1              | 1.0                               | 1.8                                | 1.8                                | 3.4                                | 6.0                                | 8.0                                | 7.3                             |
| Thermal conductivity of products W/m·K                                     | ISO 22007-2*1              | 1.1                               | 1.4                                | 0.9                                | 2.1                                | 4.0                                | 4.7                                | 4.0                             |
| Thermal resistance 50°C/100 psi cm²·K/W                                    | ASTM D5470                 | 3.8                               | 2.5                                | 2.0                                | 1.7                                | 1.2                                | 1.0                                | 1.9                             |
| Density at 23℃ g/cm³                                                       | JIS K 6249                 | 1.70                              | 1.86                               | 1.65                               | 2.84                               | 1.63                               | 1.56                               | 1.66                            |
| Hardness Durometer A                                                       | JIS K 6249                 | 70                                | 91                                 | 87                                 | 90                                 | 88                                 | 83                                 | 91                              |
| Dielectric breakdown voltage Air atmosphere kV                             | JIS K 6249                 | 15                                | 10                                 | 8                                  | 9                                  | 9                                  | 8                                  | 15                              |
| Dielectric strength Air atmosphere kV                                      | JIS C 2110                 | 15                                | 7                                  | 6                                  | 7                                  | 7                                  | 7                                  | 13                              |
| Volume resistivity TΩ·m                                                    | JIS K 6249                 | 5.4                               | 3.5                                | 14.0                               | 0.9                                | 6.4                                | 5.4                                | 68.0                            |
| Flame retardance UL94                                                      | - V-0 (UL file No. E48923) |                                   |                                    |                                    |                                    |                                    |                                    |                                 |
| Low-molecular weight siloxane content ΣD <sub>3</sub> -D <sub>10</sub> ppm | Shin-Etsu<br>method*2      | 40                                | 30                                 | <10                                | <10                                | <10                                | 20                                 | <0                              |

<sup>■1</sup> Hot disk method
■2 Acetone extraction me

(Not specified values

<sup>\*2</sup> Acetone extraction method \*We provide not only sheet, but also cap or tube shapes. So if you need them, please contact our sales department.

# Thermal Interface Silicone Soft Pads

## **Suitable Applications**

- ·Heat radiation from uneven heat sources\*
- ·Attaching multiple heating elements together
- Ensuring the space distance as an insulator
- \*By absorbing gaps generated by tolerances on the heat source side and the heatsink side, voids between the heat generating elements, pads, and heat sink are eliminated, and the heat radiation effect is maximized.

## Unsuitable Applications

·Use in areas where thinness is required (Guideline: 0.3 mm or less)

# **Features**

- ·Maximize heat dissipation effect by adhering well to heat generating parts and reducing thermal resistance
- •Easy attachment/detachment to/from the heat generating part and temporary fixation, and excellent workability
- •Dissipate heat from each heating element to the overall housing and heatsink
- ·High cost performance and thermal conductivity

# Structure





# Application Examples Radiating heat from





# **General Properties**

| Туре                                             |                       | Ultra-soft<br>Multi-layer                | General-purpose                                                              |                                              |                                          |                                              |                                              | Low density                                  |                                              | Ultra High Thermal<br>Conductivity |
|--------------------------------------------------|-----------------------|------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|------------------------------------|
| Parameter                                        | Series                | TC-SP-1.7<br>Series                      | TC-CAS-10<br>Series                                                          | TC-CAB-10<br>Series                          | TC-CAD-10<br>Series                      | TC-CAT-20<br>Series                          | TC-CAF-40<br>Series                          | TC-PEN3-10<br>Series                         | TC-PEN5-20<br>Series                         | TC-UP8<br>Series                   |
| Color                                            |                       | Light blue/gray                          | Dark gray                                                                    | Pale reddish brown                           | Pale red purple                          | Gray                                         | Light purple                                 | Light purple                                 | Blue                                         | Gray                               |
| Standard size                                    | mm                    | 300×400                                  | 300×400                                                                      | 300×400                                      | 300×400                                  | 300×400                                      | 300×400                                      | 300×400                                      | 300×400                                      | 300×400                            |
| Thickness*1                                      | mm                    | 0.5、1.0<br>1.5、2.0<br>2.5、3.0<br>4.0、5.0 | 0.5, 1.0<br>1.5, 2.0<br>2.5, 3.0<br>4.0, 5.0<br>6.0, 7.0<br>8.0, 9.0<br>10.0 | 0.5, 1.0<br>1.5, 2.0<br>2.5, 3.0<br>4.0, 5.0 | 0.5、1.0<br>1.5、2.0<br>2.5、3.0<br>4.0、5.0 | 0.5, 1.0<br>1.5, 2.0<br>2.5, 3.0<br>4.0, 5.0 | 0.5、1.0<br>1.5、2.0                 |
| Representative product properties                | Test method           | TC-SP-1.7<br>(Thickness: 1.0 mm)         | TC-CAS-10<br>(Thickness: 1.0 mm)                                             | TC-CAB-10<br>(Thickness: 1.0 mm)             | TC-CAD-10<br>(Thickness: 1.0 mm)         | TC-CAT-20<br>(Thickness: 1.0 mm)             | TC-CAF-40<br>(Thickness: 1.0 mm)             | TC-PEN3-10<br>(Thickness: 1.0 mm)            | TC-PEN5-20<br>(Thickness: 1.0 mm)            | TC-UP8<br>(Thickness: 1.0 mm)      |
| Thermal conductivity of rubber W/m·K             | ISO 22007-2*3         | 1.5                                      | 1.8                                                                          | 2.3                                          | 3.2                                      | 4.5                                          | 5.2                                          | 3.2                                          | 5.2                                          | 8.0                                |
| Thermal resistance 50°C/40 psi cm²·K/W           | ASTM D5470            | 8.2                                      | 3.3                                                                          | 2.4                                          | 2.2                                      | 1.6                                          | 1.5                                          | 2.34                                         | 1.27                                         | 0.45                               |
| Density at 23°C g/cm³                            | JIS K 6249            | 2.3                                      | 1.9                                                                          | 2.2                                          | 3.0                                      | 3.2                                          | 3.3                                          | 2.6                                          | 2.9                                          | 3.2                                |
| Hardness Asker C*2                               | JIS K 6249            | 2                                        | 10                                                                           | 10                                           | 10                                       | 20                                           | 40                                           | 10                                           | 20                                           | 15                                 |
| Dielectric breakdown voltage in oil kV           | JIS K 6249            | 20                                       | 22                                                                           | 22                                           | 15                                       | 15                                           | 16                                           | 21                                           | 20                                           | 10                                 |
| Dielectric strength in oil kV                    | JIS C 2110            | 16                                       | 10                                                                           | 11                                           | 11                                       | 11                                           | 11                                           | 16                                           | 16                                           | 8                                  |
| Flame retardance UL94                            | _                     |                                          | V-0 (UL file No. E48923)                                                     |                                              |                                          |                                              | V-0 equivalent                               |                                              |                                              |                                    |
| Low-molecular weight siloxane content ΣD₃-D₁∘ppm | Shin-Etsu<br>method*2 | 20                                       | 70                                                                           | 90                                           | 90                                       | 200                                          | 90                                           | <10                                          | <10                                          | <10                                |

Please contact our sales department for details on other thickness of the product lineup.

lardness (Asker C): Measured by stacking two thermal interface sof/ultra soft silicone pads with a thickness of 6 mm.

cetone extraction mathematics.

# **Double Sided Thermal Interface Silicone Tapes TC-SAS Series**

# **Thermal Softening Sheets** Phase Change Materials

### **Suitable Applications**

 Insulating heat dissipation of the part to be fixed by adhesive

#### Unsuitable Applications

 Heat dissipation in areas requiring high thermal conductivity



# **Features**

- Threadless with strong and stable adhesion
- •Stable thermal resistance over a wide range of temperatures
- Good workability in large areas

# Application Examples





# Reliability test data





# **General Properties**

|                      |                           | Product name | TC-10SAS                 | TC-20SAS |  |
|----------------------|---------------------------|--------------|--------------------------|----------|--|
| Parameter            |                           | Test method  | 1C-103A3                 | TC-203A3 |  |
| Thermal conduct      | tivity W/m•K              | ASTM E1461*3 | 1.0                      | 1.0      |  |
| Thermal resistan     | ce cm²•K/W                | ASTM E1461*3 | 2.0                      | 2.9      |  |
| Color                |                           |              | White                    | White    |  |
| Standard size        | mm                        | -            | 300×400                  | 300×400  |  |
| Thickness*1          | μm                        | -            | 100                      | 200      |  |
| Dielectric breakdown | voltage Air atmosphere kV | JIS K 6249   | 3                        | 6        |  |
|                      | Aluminum                  |              | 6.0                      | 6.4      |  |
| Peeling strength*2   | SUS                       | -            | 7.0                      | 7.6      |  |
|                      | Glass epoxy               | -            | 7.6                      | 8.1      |  |
| Flame resistance     | UL94                      | -            | V-0 (UL file No. E48923) |          |  |

- \*\*Please contact our sales department for details on other thickness of the product lineup.
   \*\*2 After sticking a tape on a test plate, then pressed down using a 2kg roller.
   After 10 minutes, the tape was then peeled off in the 180-degree direction and measureme

### **Suitable Applications**

- Heat dissipation at the site requiring the thinness (low BLT\*)
  - \*BLT=Bond Line Thickness

#### Unsuitable Applications

 Heat dissipation in the vertical region



Structure

# **Features**

- ·Handling of sheets and heat dissipation performance of grease are compatible.
- ·Adhesion and insertion are possible in determinate quantities with adhesion comparable to grease.
- •Softened to grease at about 50℃
- •When compression is applied in a heat softened state, the BLT becomes low.
- •The wettability is improved by the self-heating of the device even after mounting.
- Excellent pumpout resistance

# **Application Examples**



# Model of heat softening





# General Properties

|                                                | roduct name      | PCS-CR-10      | PCS-LT-30      | PCS-PL-30      |
|------------------------------------------------|------------------|----------------|----------------|----------------|
| Parameter                                      | Test method      | r C3-CK-10     | 1 03-21-30     | 1 03-1 1-30    |
| Thermal conductivity W/m·K                     | ASTM E1461*2     | 2.0            | 3.0            | 1.7*3          |
| Thermal resistance*1 cm <sup>2</sup> ·K/W      | ASTM E1461*2     | 0.08           | 0.11           | 0.73           |
| Туре                                           | -                | Non-insulated  | Non-insulated  | Insulator      |
| Color                                          | -                | White          | Gray           | White          |
| Initial thickness µm                           | -                | 200            | 120            | 120            |
| Thickness after compression* $^{*1}~\mu m$     | Microgauge       | 10             | 28             | 30             |
| Reinforcement layer                            | -                | None           | None           | Polyimide film |
| Density at 23°C g/cm³                          | JIS K 6249       | 2.9            | 2.4            | 2.7            |
| Dielectric breakdown voltage Air atmosphere kV | JIS K 6249       | -              | -              | 5.5*4          |
| Softening point ℃                              | Shin-Etsu method | About 50       | About 50       | About 50       |
| Standard size mm                               | -                | 300×400, Roll  | 300×400, Roll  | 320×400, Roll  |
| Flame resistance UL94                          | -                | V-0 equivalent | V-0 equivalent | V-0 equivalent |

- heating and compression at 50 psi/100°C for 1 h
- \*2 Laser has interior
  \*3 Thermal conductivity of the phase change material

(Not specified values)

(Not specified values)

# Thermal Interface Oil Compounds

## **Suitable Applications**

- •Thermal dissipation in areas where thin film application (low BLT\*) is required (thermal resistance can be reduced by using thin film)
- •Thermal dissipation in areas with fine irregularities
- •Thermal dissipation in areas where reworkability is required \*BLT=Bond Line Thickness

## Unsuitable Applications

Use in parts that cannot be screwed
 (Thermal interface oil compound is not adhesive.)

# Features

- •Among thermal interface silicone products, it has high thermal conductivity and low contact thermal resistance.
- •Since it is grease-like, it can be used for low BLT by wetting and crushing heat-generating parts well.
- •A lineup of high performance products with resistance to pumping out and misalignment

# Consistency



Soft grease

# Application Examples





# General Properties

| Parameter Product name                                                     | G-775      | G-777        | G-779      | Condensation Cure Type<br>G-1000 | Solvent Diluted Type<br>G-776 | Solvent Diluted Type<br>G-787 | Solvent Diluted Type<br>G-790 |
|----------------------------------------------------------------------------|------------|--------------|------------|----------------------------------|-------------------------------|-------------------------------|-------------------------------|
| Appearance                                                                 |            | White Grease |            |                                  |                               |                               |                               |
| Thermal conductivity W/m·K                                                 | 3.6        | 3.3          | 3.0        | 2.4                              | 1.3*2                         | 4.0*2                         | <b>3.2</b> * <sup>2</sup>     |
| Thermal resistance*1 mm²•K/W                                               | 25         | 21           | 10         | 29                               | 7                             | 10                            | 3                             |
| BLT μm                                                                     | 75         | 56           | 25         | 50                               | 10                            | 30                            | 10                            |
| Specific gravity at 25°C                                                   | 3.4        | 3.2          | 3.2        | 3.04                             | 2.9                           | 3.48                          | 3.3                           |
| Viscosity at 25°C Pa·s                                                     | 500        | 140          | 160        | 80                               | 60*3                          | 70*3                          | 90*3                          |
| Hardness after curing Asker C                                              | -          | -            | -          | 40                               | -                             | -                             | -                             |
| Dielectric breakdown strength 0.25 mm kV                                   | 2.5        | 3.2          | 3.2        | 3.6                              | 2.9                           | 2.4                           | 2.5                           |
| Use temperature range °C                                                   | -40 - +150 | -40 - +200   | -40 - +200 | -40 - +180                       | -40 - +200                    | -40 - +200                    | -40 - +200                    |
| Low-molecular weight siloxane content ΣD <sub>3</sub> -D <sub>10</sub> ppm | <300       | <100         | <100       | <100                             | <100                          | <100                          | <100                          |

<sup>\*1</sup> Values of BLT thickness \*2 After solvent evaporation \*3 Before solvent evaporation

(Not specified values)

# Thermal Interface Liquid Silicone Rubbers Adhesives & Potting Materials

# **Suitable Applications**

- Heat dissipation at heat-generating sites with complicated shapes to which no sheet can be attached
- ·Bonding and fixing of heating element
- Heat dissipation in uneven areas

### Unsuitable Applications

- ·Heat dissipation in areas where reworkability is required
- ·Condensation cure type: heat dissipation and lamination of moisture-free confined area
- •Addition cure type: heat dissipation of parts that cannot be heated due to low heat resistance of peripheral components



- Pastes and liquids can be used in various heating element shapes.
- •React with moisture or cure to rubber elastics by heating
- •In addition to radiating heat from heat-generating elements, it is possible to bond and fix them, and to pot and seal them for insulation and moisture-proof purposes.
- •UL certified products (UL94 V-0)



Paste, medium and low-viscosity liquids



# Adhesive



# Application Examples General Properties





| Product name                                      | -<br>       |               |             |                              |                     |
|---------------------------------------------------|-------------|---------------|-------------|------------------------------|---------------------|
| Parameter Product Haille                          | KE-4918-WF  | KE-4961-W     | KE-4962-W   | KE-1867                      | KE-1891             |
| Thermal conductivity W/m·K                        | 0.85        | 1.6           | 2.4         | 2.2                          | 4.0                 |
| Curing method                                     | One-co      | mponent conde | ensation    | One-compor                   | nent addition       |
| Before curing                                     |             |               |             |                              |                     |
| Appearance                                        | White paste | White paste   | White paste | Gray medium viscosity liquid | Grayish white paste |
| Byproduct gas                                     | Alcohol     | Alcohol       | Alcohol     | NA                           | NA                  |
| Viscosity at 23°C Pa·s                            | -           | -             | -           | 70                           | -                   |
| Tack-free time min                                | 3           | 1             | 2           | NA                           | NA                  |
| Standard curing conditions                        | 23°C ± 2    | °C/50 ± 5% RH | 120℃×1h     |                              |                     |
| After curing                                      |             |               |             |                              |                     |
| Density at 23℃ g/cm³                              | 1.68        | 2.34          | 2.65        | 2.92                         | 3.06                |
| Hardness durometer A                              | 80          | 80            | 88          | 75                           | 96                  |
| Tensile strength MPa                              | 3.5         | 3.9           | 4.4         | 2.1                          | 5.3                 |
| Elongation at break %                             | 50          | 60            | 30          | 60                           | 10                  |
| Volume resistivity TΩ·m                           | 4.5         | 1.0           | 1.0         | 1.2                          | 3.4                 |
| Dielectric breakdown strength kV/mm               | 27          | 24            | 25          | 23                           | 25                  |
| Tensile lap-shear strength (Al/Al) MPa            | 1.0 (Cu/Cu) | 0.7           | 0.8         | 0.8                          | 0.8                 |
| Low-molecular weight siloxane content ΣD3-D10 ppm | <300        | <300          | <300        | <300                         | <300                |
| Flame resistance UL94                             | V-0         | V-0           | V-0         | V-0                          | V-0                 |

(Not specified values

# **Potting Agent**



# Application Examples General Properties

Heat-dissipation, insulation, and moisture-proof potting of terminal boxes



| Parameter Product                           | s name  | KE-1897S-A/B       | KE-8006-A/B             | KE-1899-A/B        | KE-8001-A/B        |  |  |  |  |
|---------------------------------------------|---------|--------------------|-------------------------|--------------------|--------------------|--|--|--|--|
| Thermal conductivity                        | W/m•K   | 2.1                | 2.2                     | 3.0                | 3.2                |  |  |  |  |
| Curing method                               |         |                    | Two-component, addition |                    |                    |  |  |  |  |
| Before curing                               |         |                    |                         |                    |                    |  |  |  |  |
| Appearance                                  | Pa•s    | A: Gray / B: White | A: Gray / B: White      | A: Gray / B: White | A: Gray / B: White |  |  |  |  |
| Viscosity at 23℃                            | h       | A:13/B:7           | A:12/B:7.5              | A:26/B:17          | A:33/B:20          |  |  |  |  |
| Workable time (reference) at 23℃            |         | 48                 | 2                       | 48                 | 48                 |  |  |  |  |
| Recommended curing conditions               |         | 120℃×1 h           | 23℃×24 h                | 120℃×1 h           | 120℃×1 h           |  |  |  |  |
| After curing                                |         |                    |                         |                    |                    |  |  |  |  |
| Density at 23℃                              | g/cm³   | 2.78               | 2.75                    | 2.99               | 3.04               |  |  |  |  |
| Hardness Durometer A                        | MPa     | 15                 | 23                      | 16                 | 53                 |  |  |  |  |
| Tensile strength                            | MPa     | 0.3                | 0.4                     | 0.3                | 1.0                |  |  |  |  |
| Elongation at break                         | %       | 80                 | 39                      | 60                 | 30                 |  |  |  |  |
| Volume resistivity                          | TΩ•m    | 0.1                | 0.1                     | 0.3                | 0.28               |  |  |  |  |
| Dielectric breakdown strength               | kV/mm   | 17                 | 17                      | 17                 | 19                 |  |  |  |  |
| Tensile lap-shear strength (Al/A            | l) MPa  | 0.2                | 0.3                     | 0.2                | 0.5                |  |  |  |  |
| Low-molecular weight siloxane content ∑D₃-D | )10 ppm | <300               | <300                    | <300               | <300               |  |  |  |  |
| Flame resistance UL94                       |         | V-0                | V-0 equivalent          | V-0                | V-0                |  |  |  |  |

# Thermal Interface Gap Filler SDP Series & Pre-cured Gel Series

## **Suitable Applications**

- Heat dissipation in areas where thick coating is required (When the clearance of the parts is large)
- ·Heat dissipation in areas where stress relaxation is required using cushioning properties of materials
- •Heat dissipation in uneven areas (excellent compliance)
- ·Heat dissipation in areas where reworkability is required

# **Unsuitable Applications**

 Use in parts that cannot be screwed (Gap filler is not adhesive.)

# **Features**

- Usable for a variety of heating element shapes
- room temperature addition cure type
- Pre-cured type
- •SDP Series: Two-component ...... Cures into a soft sheet at room temperature to relieve stress Curing time can be shortened by heating.
- •Pre-cured Series: One component ...... It can be applied thickly and is excellent in pumpout resistance and misalignment resistance.

# **SDP Series: Two-component Room Temperature Addition Cure Type**

# Consistency

Before curing: Grease-like and wet well to the substrate surface















# **General Properties**

| Parameter                           | Product name                 | SDP-3560-A/B               | SDP-5040-A/B               | SDP-6560-A/B               | SDP-8070-A/B           | SDP-9550-A/B   |  |  |
|-------------------------------------|------------------------------|----------------------------|----------------------------|----------------------------|------------------------|----------------|--|--|
| Thermal conductivity                | W/m•K                        | 3.5                        | 5.1                        | 6.5                        | 8.0                    | 9.5            |  |  |
| Curing method                       |                              |                            | Two-component, addition    |                            |                        |                |  |  |
| Standard curing conditions          |                              |                            |                            | 25℃×24h                    |                        |                |  |  |
| Before curing                       |                              |                            |                            |                            |                        |                |  |  |
| Appearance                          | A:White,<br>B:Sky blue       | A:Grayish white<br>B: Pink | A:Grayish white<br>B: Pink | A:Grayish white,<br>B:Pink | A:Gray,<br>B:Pale Pink |                |  |  |
| Viscosity at 23°C                   | Pa•s                         | A:107 B:112*               | A:181 B:162*               | A:282 B:288*               | A:196 B:203*           | A:293 B:330*   |  |  |
| Mix ratio                           |                              |                            |                            | 100:100                    |                        |                |  |  |
| Mixed viscosity at 25°C             | Mixed viscosity at 25°C Pa·s |                            | 169*                       | 284*                       | 201*                   | 320*           |  |  |
| Pot life at 23°C                    | Pot life at 23°C min         |                            | 240                        | 240                        | 240                    | 240            |  |  |
| Specific gravity at 25℃             |                              | A:3.09/B3.10               | A:3.25/B3.26               | A/B:3.20                   | A/B:3.14               | A/B:3.05       |  |  |
| After curing                        |                              |                            |                            |                            |                        |                |  |  |
| Density at 23°C                     | g/cm³                        | 3.1                        | 3.27                       | 3.34                       | 3.18                   | 3.05           |  |  |
| Hardness                            | Shore OO                     | 65                         | 42                         | 61                         | 69                     | 54             |  |  |
| riai uliess                         | Asker C                      | 35                         | 16                         | 30                         | 42                     | 24             |  |  |
| Tensile strength                    | MPa                          | 0.2                        | 0.1                        | 0.1                        | 0.2                    | 0.1            |  |  |
| Elongation at break                 | %                            | 50                         | 30                         | 20                         | 20                     | 40             |  |  |
| Volume resistivity                  | 0.015                        | 0.031                      | 0.028                      | 0.016                      | 0.014                  |                |  |  |
| Dielectric breakdown strength       | 20                           | 21                         | 20                         | 16                         | 14                     |                |  |  |
| Low-molecular weight siloxane conte | <300                         | <300                       | <300                       | <300                       | <300                   |                |  |  |
| Flame resistance                    | UL94                         | V-0 equivalent             | V-0                        | V-0                        | V-0 equivalent         | V-0 equivalent |  |  |

# Pre-cured Gel Series: One-component Pre-cured Type Products with Improved Pumpout and Misalignment Resistance

# Consistency







■Viscosity (150°C)

**Examples** 

ECU heat dissipation

components subject to vibration, such as in-vehicle components

Heat dissipation of

# Application Pumpout test results

| Product name<br>Test condition | CLG-1500 | CLG-2500 | CLG-3500 | CLG-4500 | G-800 |
|--------------------------------|----------|----------|----------|----------|-------|
| Initial                        |          | *****    |          |          |       |
| 1,000<br>cycles later          |          |          |          |          |       |

- 1 A sample is sandwiched between a microscope slide (glass) and an aluminum plate, which are separated by a 2.0mm spacer. 0.5mm spacer is used only for G-800.
- 2 This test piece is stood vertically, and a heat cycle test is conducted (cycling between -40°C × 30 min and + 125°C ×

# **General Properties**

| Parameter Product name                                                     | CLG-1500   | CLG-2500 | CLG-3500 | CLG-4500 | G-800 |  |  |  |
|----------------------------------------------------------------------------|------------|----------|----------|----------|-------|--|--|--|
| Thermal conductivity W/m·K                                                 | 1.5        | 2.9      | 3.5      | 4.8      | 4.0   |  |  |  |
| Appearance                                                                 |            | White    |          |          |       |  |  |  |
| Specific gravity at 25℃                                                    | 2.6        | 2.9      | 3.1      | 3.2      | 4.4   |  |  |  |
| Viscosity at 25°C Pa·s                                                     | 500        | 500      | 250      | 550      | 170   |  |  |  |
| Dielectric breakdown strength KV/mm                                        | 9.6        | 6.2      | 8.9      | 4.7      | 3.2   |  |  |  |
| Use temperature limit $^{\circ}$                                           | -40 - +180 |          |          |          |       |  |  |  |
| Low-molecular weight siloxane content ΣD <sub>3</sub> -D <sub>10</sub> ppm | <300       | <300     | <300     | <300     | <200  |  |  |  |

# **Thermal Conductive Characteristics List**

| Type                   | Series<br>Product name | Thermal conductivity, Bulk elastomer W/m·K | Thermal conductivity of products W/m·K | Thermal resistance<br>cm²·K/W | Test method                        |
|------------------------|------------------------|--------------------------------------------|----------------------------------------|-------------------------------|------------------------------------|
|                        | TC-TA-1 Series         | 1.0                                        | 1.1                                    | 3.8                           |                                    |
|                        | TC-TAG-2 Series        | 1.8                                        | 1.4                                    | 2.5                           | Thermal conductivity of products : |
| Thermal Interface      | TC-TAP-2 Series        | 1.8                                        | 0.9                                    | 2.0                           | ISO 22007-2 Hot disk method        |
| Insulating             | TC-TAG-3 Series        | 3.4                                        | 2.1                                    | 1.7                           |                                    |
| Silicone Rubber Sheets | TC-TAG-6 Series        | 6.0                                        | 4.0                                    | 1.2                           | Thermal resistance :               |
|                        | TC-TAG-8 Series        | 8.0                                        | 4.7                                    | 1.0                           | ASTM D5470 50°C/100 psi            |
|                        | TC-BG Series           | 7.3                                        | 4.0                                    | 1.9                           |                                    |

| Type               | Series<br>Product name | Thermal conductivity, Bulk elastomer W/m·K | Thermal resistance<br>cm²·K/W | Test method                                                       |
|--------------------|------------------------|--------------------------------------------|-------------------------------|-------------------------------------------------------------------|
|                    | TC-PEN3-10 Series      | 3.2                                        | 2.3                           |                                                                   |
|                    | TC-PEN5-20 Series      | 5.2                                        | 1.3                           |                                                                   |
|                    | TC-UP8 Series          | 8.0                                        | 0.5                           |                                                                   |
| Thermal Interface  | TC-SP-1.7 Series       | 1.5                                        | 8.2                           | Thermal conductivity, Bulk elastomer: ISO 22007-2 Hot disk method |
| Silicone Soft Pads | TC-CAS-10 Series       | 1.8                                        | 3.3                           | •                                                                 |
| Silicone Soit Paus | TC-CAB-10 Series       | 2.3                                        | 2.4                           | Thermal resistance : ASTM D5470 50°C/40 psi                       |
|                    | TC-CAD-10 Series       | 3.2                                        | 2.2                           |                                                                   |
|                    | TC-CAT-20 Series       | 4.5                                        | 1.6                           |                                                                   |
|                    | TC-CAF-40 Series       | 5.2                                        | 1.5                           |                                                                   |

| Туре                                               | Series<br>Product name | Thermal conductivity W/m·K | Thermal resistance cm <sup>2</sup> ·K/W | Test method                                                                 |  |
|----------------------------------------------------|------------------------|----------------------------|-----------------------------------------|-----------------------------------------------------------------------------|--|
| Double Sided Thermal<br>Interface Silicone Tapes   | TC-10SAS               | 1.0                        | 2.0                                     | Thermal Conductivity & Thermal Resistance: ASTM E 1461 Laser Flash Meth     |  |
| TC-SAS series                                      | TC-20SAS               | 1.0                        | 2.9                                     | Thermal Conductivity & Thermal Nesistance. ASTIVI E 1401 Laser Hashi Method |  |
| Thermal Softening Sheets<br>Phase change materials | PCS-CR-10              | 2.0                        | 0.08                                    | Thermal conductivity: ASTM E 1461 Laser Flash Method                        |  |
|                                                    | PCS-LT-30              | 3.0                        | 0.11                                    | Thermal resistance : ASTM E 1461 Laser Flash Method                         |  |
|                                                    | PCS-PL-30              | 1.7*                       | 0.73                                    | After Heating and Compressing at 50 psi/100°C for 1 h                       |  |

<sup>\*</sup>Thermal conductivity of the phase change material

| Туре                               | Product name | Thermal conductivity<br>W/m·K | Thermal resistance<br>mm²·K/W | Dielectric breakdown strength kV/0.25mm | Test method                                |
|------------------------------------|--------------|-------------------------------|-------------------------------|-----------------------------------------|--------------------------------------------|
| Thermal Interface<br>Oil Compounds | G-775        | 3.6                           | 25 (75μm)                     | 2.5                                     |                                            |
|                                    | G-777        | 3.3                           | 21 (56µm)                     | 3.2                                     |                                            |
|                                    | G-779        | 3.0                           | 10 (25μm)                     | 3.2                                     | Thermal conductivity: ISO 22007-2          |
|                                    | G-1000       | 2.4                           | 29 (50μm)                     | 3.6                                     | Thermal resistance: Shin-Etsu method       |
|                                    | G-776        | 1.3                           | 7 (10μm)                      | 2.9                                     | Dielectric breakdown strength : JIS K 6249 |
|                                    | G-787        | 4.0                           | 10 (30μm)                     | 2.4                                     |                                            |
|                                    | G-790        | 3.2                           | 3 (10µm)                      | 2.5                                     |                                            |

| Type                                         | Product name | Thermal conductivity W/m·K | Dielectric breakdown strength kV/mm | Test method                                |  |
|----------------------------------------------|--------------|----------------------------|-------------------------------------|--------------------------------------------|--|
| Thermal Interface                            | KE-4918-WF   | 0.85                       | 27                                  |                                            |  |
|                                              | KE-4961-W    | 1.6                        | 24                                  |                                            |  |
| Liquid Silicone Rubbers                      | KE-4962-W    | 2.4                        | 25                                  |                                            |  |
| Adhesives                                    | KE-1867      | 2.2                        | 23                                  | Thermal conductivity : JIS R 2616          |  |
|                                              | KE-1891      | 4.0                        | 25                                  |                                            |  |
|                                              | KE-1897S-A/B | 2.1                        | 17                                  | Dielectric breakdown strength : JIS K 6249 |  |
| Thermal Interface<br>Liquid Silicone Rubbers | KE-8006-A/B  | 2.2                        | 17                                  |                                            |  |
| Potting Materials                            | KE-1899-A/B  | 3.0                        | 17                                  |                                            |  |
|                                              | KE-8001-A/B  | 3.2                        | 19                                  |                                            |  |
|                                              | SDP-3560-A/B | 3.5                        | 20                                  |                                            |  |
|                                              | SDP-5040-A/B | 5.1                        | 21                                  | Thermal conductivity : ISO 22007-2         |  |
| Gap Filler                                   | SDP-6560-A/B | 6.5                        | 20                                  |                                            |  |
|                                              | SDP-8070-A/B | 8.0                        | 16                                  | Dielectric breakdown strength : JIS K 6249 |  |
|                                              | SDP-9550-A/B | 9.5                        | 14                                  |                                            |  |
| Pre-cured Gel Series                         | CLG-1500     | 1.5                        | 9.6                                 |                                            |  |
|                                              | CLG-2500     | 2.9                        | 6.2                                 |                                            |  |
|                                              | CLG-3500     | 3.5                        | 8.9                                 | Thermal conductivity: ISO 22007-2          |  |
|                                              | CLG-4500     | 4.8                        | 4.7                                 |                                            |  |
|                                              | G-800        | 4.0                        | 3.2                                 |                                            |  |

# Measurement and Evaluation of Thermal Properties

Two values which represent the thermal properties of thermal interface materials are thermal conductivity ( $\lambda$ ) and thermal resistance (R). Heat-dissipation performance is directly proportional to thermal conductivity and inversely proportional to thermal resistance. Heat-dissipation is affected not only by the thermal conductivity of the silicone itself, but is also largely dependent on the contact thermal resistance of the interface between the heat generator and the heat dissipator.

If temperature is constant, thermal conductivity is a value inherent to a particular substance. According to Fourier's Law, in a static state, the proportionality constant is thermal conductivity.



Q:Quantity of heat transmission A:Cross sectional area of test piece L:Thickness of test piece

Thermal resistance is the sum of contact resistance plus the resistance present as a quantity of heat (Q) flows between temperatures at T1 and T2.



Ro: The conventional thermal resistance of the substance Rs: The contact thermal resistance



# Measurement of Thermal Conductivity

Hot-wire method JIS R 2616

Measurement method used for liquid silicone rubbers. A probe (hot wire and thermocouple) is placed on top of a sample, and temperature change, voltage, amperage and thermal conductivity over time are measured.

Hot disc method ISO 22007-2

Measurement method used for rubber finished products and oil compounds. A constant current is supplied to a sensor sandwiched between samples.

The sensor is heated to a constant temperature, and the rise in temperature is measured by the change in impedance to the sensor, from which thermal conductivity is calculated.

Laser flash method ASTM E-1461

Measurement method used for double sided thermal interface silicone tapes TC-SAS series and phase change materials.

A sample is illuminated with a laser, and the thermal diffusivity of the sample is derived from the rise in temperature of the sample. This is used to calculate thermal conductivity.

# Low-molecular-weight (LMW) Siloxane



# What is LMW siloxane?

The figure shows the chemical formula of low-molecular-weight siloxane, a nonreactive cyclic dimethyl polysiloxane (generally D<sub>3</sub>-D<sub>10</sub>), which is volatile and therefore sublimates into the atmosphere both during and after curing. As shown below, LMW siloxane has been reported to cause electrical contact failure under certain conditions.

\* Almost all of products in this catalog reduce low molecular siloxane content.

#### LMW siloxane content in TC Series

| Grade      | ΣD <sub>n</sub> (ppm) (n=3-10) |
|------------|--------------------------------|
| TC-TA-1    | 40                             |
| TC-TAG-2   | 30                             |
| TC-TAG-3   | 10 >                           |
| TC-TAP-2   | 10 >                           |
| TC-30BG    | 10 >                           |
| TC-30C-CP  | 10 >                           |
| TC-30S2-CP | 10 >                           |



# Electrical Contact Failure

It has already been noted that various substances may lead to contact failure. Contact failure may be caused by organic materials such as human body oils and organic gases, or inorganic materials such as hydrogen sulfide and ammonia gas. Electric and electronic manufacturers report that LMW siloxane can cause contact failure in the low-voltage, low-current range.

#### Relationship of load conditions to contact reliability

\*Effects of load on contact reliability (micro-relay)

|    |        | Presence of Si accretion<br>at point of contact(Y/N) | Contact resistance |                                                                                     |
|----|--------|------------------------------------------------------|--------------------|-------------------------------------------------------------------------------------|
| 1  | DC1V   | 1mA                                                  | N                  | No increase measured                                                                |
| 2  | DC1V   | 36mA                                                 | N                  | Occasional increase of several ohms                                                 |
| 3  | DC3.5V | 1mA                                                  | N                  | No increase measured                                                                |
| 4  | DC5.6V | 1mA                                                  | Y                  | No increase measured                                                                |
| 5  | DC12V  | 1mA                                                  | Y                  | Increase of several ohms, up to infinity                                            |
| 6  | DC24V  | 1mA                                                  | Y                  | Around 1500 times, readings of infinity were seen; at 3000 times, all were infinity |
| 7  | DC24V  | 35mA                                                 | Y                  | Around 3000 times, readings of infinity were seen; at 4500 times, all were infinity |
| 8  | DC24V  | 100mA                                                | Y                  | No increase measured                                                                |
| 9  | DC24V  | 200mA                                                | Y                  | No increase measured                                                                |
| 10 | DC24V  | 1mA                                                  | Y                  | No increase measured                                                                |
| 11 | DC24V  | 4mA                                                  | Y                  | No increase measured                                                                |

[Test conditions] Switching frequency 1 Hz, temp:. room temperature, contact force 13 g Presented by The Institute of Electronics, Information and Communication Engineers(corporation), Yoshimura and Itoh EMC76-41 Feb. 18, 1977.

#### Mechanisms of contact failure



The prime ingredient of RTV silicone rubbers is dimethyl polysiloxane which derives from the normal manufacturing process containing ring structures in trace amounts. Because this cyclic dimethyl polysiloxane is nonreactive and volatile, it sometimes vaporizes in the air after curing. As shown in the figure above, this sublimated cyclic dimethyl polysiloxane can be a mechanism of contact failure under certain conditions.



#### Silicone Division

Marunouchi Eiraku Bldg., 4-1, Marunouchi 1-chome, Chiyoda-ku, Tokyo 100-0005, Japan

< Thermal Interface Insulating Silicone Rubber Sheets, Thermal Interface Silicone Soft Pads,

Double Sided Thermal Interface Silicone Tapes, Thermal Softening Sheets Phase Change Materials >

< Thermal Interface Oil Compounds, Thermal Interface Liquid Silicone Rubbers, Gap Fillers >

#### Shin-Etsu Silicones of America, Inc.

1150 Damar Drive, Akron, OH 44305, U.S.A. Phone: +1-330-630-9860 Fax: +1-330-630-9855

### Shin-Etsu do Brasil Representação de Produtos Químicos Ltda.

Rua Coronel Oscar Porto, 736 - 8° Andar - Sala 84, Paraíso São Paulo - SP Brasil CEP: 04003-003 Phone: +55-11-3939-0690 Fax: +55-11-3052-3904

#### Shin-Etsu Silicones Europe B.V.

Bolderweg 32, 1332 AV, Almere, The Netherlands Phone: +31-(0)36-5493170 Fax: +31-(0)36-5326459 (Products & Services: Products for Cosmetics Application)

#### **Germany Branch**

Kasteler Str. 45, 65203 Wiesbaden, Germany Phone: +49-(0)611-71187290

(Products & Services: Products for Industrial Applications)

#### Shin-Etsu Silicone Korea Co., Ltd.

GT Tower 15F, 411, Seocho-daero, Seocho-gu, Seoul 06615, Korea

Phone: +82-(0)2-590-2500 Fax: +82-(0)2-590-2501

### Shin-Etsu Silicone International Trading (Shanghai) Co., Ltd.

29F Junyao International Plaza, No.789, Zhao Jia Bang Road, Shanghai 200032, China Phone: +86-(0)21-6443-5550 Fax: +86-(0)21-6443-5868

### **Guangzhou Branch**

Room 2409-2410, Tower B, China Shine Plaza, 9 Linhexi Road, Tianhe, Guangzhou, Guangdong 510610, China

Phone: +86-(0)20-3831-0212 Fax: +86-(0)20-3831-0207

#### Shin-Etsu Silicone Taiwan Co., Ltd.

Rm. D, 11F., No. 167, Dunhua N. Rd., Songshan Dist., Taipei City 105406, Taiwan, R.O.C.

Phone: +886-(0)2-2715-0055 Fax: +886-(0)2-2715-0066

#### Shin-Etsu Singapore Pte. Ltd.

1 Kim Seng Promenade #15-05/06 Great World City East Tower, Singapore 237994

Phone: +65-6743-7277 Fax: +65-6743-7477

#### Shin-Etsu Silicones Vietnam Co., Ltd.

Unit 4, 11th Floor, A&B Tower, 76A Le Lai Street, Ben Thanh Ward, District 1, Ho Chi Minh City, Vietnam Phone: +84-(0)28-35355270

#### **Hanoi Branch**

Unit 32, 29th Floor, Lotte Center Hanoi East Tower, 54 Lieu Giai Street, Ba Dinh District, Hanoi City, Vietnam Phone: +84-(0)24-3267-3868

# Shin-Etsu Silicones (Thailand) Ltd.

7th Floor, Unit 7F, Harindhorn Tower, 54 North Sathorn Road, Silom, Bangrak, Bangkok 10500, Thailand

Phone: +66-(0)2-632-2941 Fax: +66-(0)2-632-2945

#### Shin-Etsu Silicones India Pvt. Ltd.

Unit No. 403A, Fourth Floor, Eros Corporate Tower, Nehru Place, New Delhi 110019, India Phone: +91-11-43623081 Fax: +91-11-43623084

- The data and information presented in this catalog may not be relied upon to represent standard values. Shin-Etsu reserves the right to change such data and information, in whole or in part, in this catalog, including product performance standards and specifications without notice
- Users are solely responsible for making preliminary tests to determine the suitability of products for their intended use. Statements concerning possible or suggested uses made herein may not be relied upon, or be construed, as a guaranty of no patent infringement.
- For detailed information regarding safety, please refer to the Safety Data Sheet (SDS). Please download the SDS from our website. If the SDS is not listed on the website, please contact the sales department. SDS download URL

https://www.shinetsusilicone-global.com/support/sdstds

• The silicone products described herein have been designed, manufactured and developed solely for general industrial use only; such silicone products are not designed for, intended for use as, or suitable for, medical, surgical or other particular purposes. Users have the sole responsibility and obligation to determine the suitability of the silicone products described herein for any application, to make preliminary tests, and to confirm the safety of such products for their use

- Users must never use the silicone products described herein for the purpose of implantation into the human body and/or injection into humans
- Users are solely responsible for exporting or importing the silicone products described herein, and complying with all applicable laws, regulations, and rules relating to the use of such products. Shin-Etsu recommends checking each pertinent country's laws, regulations, and rules in advance, when exporting or importing, and before using the products.
- Please contact Shin-Etsu before reproducing any part of this catalog. Copyright belongs to Shin-Etsu Chemical Co., Ltd.



The Development and Manufacture of Shin-Etsu Silicones are based on the following registered international quality and environmental management standards.



Gunma Complex ISO 9001 ISO 14001 (JCQA-0004 JCQA-E-0002) Naoetsu Plant ISO 9001 ISO 14001 (JCQA-0018 JCQA-E-0064) Takefu Plant ISO 9001 ISO 14001 (JQA-0479 JQA-EM0298)

"Shin-Etsu Silicone" is a registered trademark of Shin-Etsu Chemical Co., Ltd. https://www.shinetsusilicone-global.com/